

C++	Programming

Complete	Guide	to	Learn	the	Basics	of	C++
Programming	in	7	Days

By

Xavier	S	Martin

©	Copyright	2020	by	Xavier	S	Martin-	All	rights	reserved.
The	 content	 contained	within	 this	 book	may	 not	 be	 reproduced,	 duplicated	 or
transmitted	without	direct	written	permission	from	the	author	or	the	publisher.
Under	 no	 circumstances	will	 any	 blame	or	 legal	 responsibility	 be	 held	 against
the	publisher,	or	author,	for	any	damages,	reparation,	or	monetary	loss	due	to	the
information	contained	within	this	book,	either	directly	or	indirectly.

Legal	Notice:

This	book	is	copyright	protected.	It	is	only	for	personal	use.	You	cannot	amend,
distribute,	sell,	use,	quote	or	paraphrase	any	part,	or	the	content	within	this	book,
without	the	consent	of	the	author	or	publisher.

Disclaimer	Notice:

Please	 note	 the	 information	 contained	within	 this	 document	 is	 for	 educational
and	 entertainment	 purposes	 only.	 All	 effort	 has	 been	 executed	 to	 present
accurate,	up	 to	date,	 reliable,	complete	 information.	No	warranties	of	any	kind
are	declared	or	implied.	Readers	acknowledge	that	the	author	is	not	engaged	in
the	 rendering	 of	 legal,	 financial,	 medical	 or	 professional	 advice.	 The	 content
within	 this	 book	 has	 been	 derived	 from	 various	 sources.	 Please	 consult	 a
licensed	professional	before	attempting	any	techniques	outlined	in	this	book.

By	reading	this	document,	 the	reader	agrees	 that	under	no	circumstances	 is	 the
author	responsible	for	any	losses,	direct	or	indirect,	that	are	incurred	as	a	result
of	the	use	of	the	information	contained	within	this	document,	including,	but	not
limited	to,	errors,	omissions,	or	inaccuracies.

Table	of	Contents

INTRODUCTION

CHAPTER	1:	INTRODUCTION	TO	C++
1.1	Background	of	C++

1.2	C++	Programming
●	 	How	to	write	a	C++	program
●	 	Simple	Program
●	 	Hello	World

1.3	Constants
●	 	Integer	Constants
●	 	Character	Constants
●	 	Float	Constants
●	 	Boolean	Constants
●	 	Programming	Constants

1.4	Data	Type
●	 	void	(Void)
●	 	int	(Integer)
●	 	char	(Character)
●	 	bool	(Boolean	-	logical	data	in	C++)
●	 	float	(Floating	Point)

1.5	Variables
●	 	Variable	Initialization
●	 	Variable	Declaration

1.6	Programming	Examples
Problem	1
Problem	2

1.7	Exercise	Sets

CHAPTER	2:	HOW	TO	WRITE	A	C++	PROGRAM
2.1	Expressions
●	 	Primary	Expressions	in	a	C++	Program
●	 	Binary	Expressions	in	C++
●	 	Assignment	Expressions
●	 	Postfix	Expressions

2.2	Statements
●	 	Expression	Statement
●	 	Compound	Statement

2.3	Programming	Examples
Problem	-	1
Problem-2

2.4	Exercise	Sets

CHAPTER	3:	CONCEPT	OF	“FUNCTIONS”	IN	C++
3.1	Structured	Programming	and	Designing

3.2	Functions	in	C++
●	 	User	Defined	Functions
●	 	Function	Definition
●	 	Prototype	Declaration
●	 	Function	Call
●	 	Void	Functions	with	no	Parameters
●	 	Void	Functions	with	Parameters
●	 	Function	Example

3.3	Default	Parameter	Arguments

3.4	Programming	Examples
Problem	-	1
Problem	-	2

3.5	Exercise	Sets

CHAPTER	4:	SELECTION-MAKING
4.1	Logical	Data	and	Operators
●	 	Logical	Data	in	C++
●	 	Logical	Operators
●	 	Evaluating	Logical	Expressions
●	 	Relation	Operators

4.2	Two	Way	Selection
●	 	If,	Else
●	 	Rules	for	If	Else	statements
●	 	Null	Else	Statement
●	 	Nested	If	Statements

4.3	Multiway	Selection
●	 	The	Switch	Statement
●	 	Else	If	Statement
●	 	Example	Program

4.4	Menu	Program,	C++
Problem

4.5	Programming	Examples
Problem

4.6	Exercise	Sets

CHAPTER	5:	CONCEPT	OF	“ARRAYS”	IN	C++
5.1	Using	Arrays	in	C++
●	 	Declaration	and	Definition
●	 	Accessing	Elements	in	Arrays
●	 	Storing	Values	in	Arrays
●	 	Inputting	Values
●	 	Assigning	Values
●	 	Exchanging	Values
●	 	Putting	Value

5.2	Arrays	and	Functions
●	 	Passing	Individual	Element
●	 	Passing	the	Whole	Array

5.3	Array	Applications
●	 	Frequency	Distribution	Arrays
●	 	Histograms

5.4	Sorting
●	 	Selection	Sort
●	 	Insertion	Sort
●	 	Bubble	Sort

5.5	Programming	Examples
Problem	-	1
Problem	-	2

5.6	Exercise	Sets

CHAPTER	6:	CONCEPT	OF	“POINTERS”	IN	C++
6.1	Pointers
●	 	Pointer	Constants
●	 	Pointer	Values
●	 	Pointer	Variables

6.2	Accessing	Variables	through	pointers

6.3	Pointer	Declaration

6.4	Initialization	of	a	Pointer	Variable
Problem-1
Problem-2

6.5	Pointers	and	Functions
●	 	Pointers	as	Formal	Parameters
●	 	Functions	Return	Pointers

6.6	Arrays	and	Pointers

6.7	Programming	Examples
Problem	-	1
Problem	-	2

6.8	Exercise	Sets

CHAPTER	7:	CONCEPT	OF	“CLASSES”	IN	C++
7.1	Classes
●	 	Access	Specifiers
●	 	Creating	a	Class
●	 	Declaring	a	Class
●	 	Class	Definition

7.2	Defining	a	Class	Object
●	 	Instantiation
●	 	Accessing	Class	Members
●	 	Using	Classes

7.3	Constructors	and	Destructors
●	 	Constructors
●	 	Destructors

7.4	Programming	Examples
Problem	-	1
Problem	-	2

7.5	Exercise	Sets

CHAPTER	8:	CONCEPT	OF	“STRINGS”	IN	C++
8.1	Strings
●	 	Fixed	Length	String
●	 	Variable	Length	String

8.2	C++	Strings
●	 	Storing	Strings
●	 	String	Literals

8.3	String	Input/Output
●	 	String	Input	“>>”
●	 	String	Output	“<<”

8.4	Array	and	Strings

8.5	Compare	Packed	Strings

8.6	Morse	Code	Program	Design

8.7	The	String	Class

8.8	Programming	Examples
Problem

8.9	Exercise	Sets

CONCLUSION

REFERENCES

Introduction

C++	 is	 a	 computer	 programming	 language	 widely	 used	 for	 general-purpose
programming.	It	is	an	extension	of	C-language.	The	basic	understanding	of	C++
can	be	acquired	from	C.	That’s	why	both	computer	languages	are	represented	as
C/C++.	Bjarne	Stroustrup	developed	this	multi-paradigm	language	in	1979.

In	today’s	world,	many	operating	systems	use	C++	as	their	basic	language.	Some
system	drivers,	 browsers,	 and	 games	 are	 based	 on	C++	programs.	 It	 is	 a	 free-
form,	compiled,	and	statically-typed	programming	language.	Many	professionals
believe	that	C++	is	the	most	efficient	language	to	achieve	the	desired	results.
In	 the	 “Complete	 guide	 to	 learn	 the	basics	 of	C++	programming	 in	 7	 days”,	 I
have	covered	all	 the	essential	basic	concepts	 for	beginners.	 It	 is	a	 step	by	step
guide,	which	makes	 sure	 the	 understanding	 of	C++	 programming.	 First	 of	 all,
there	 is	 a	 need	 to	know	 the	 structure	 and	 syntax	of	C++,	 along	with	 the	basic
expressions.	 Then,	 it	 guides	 the	 major	 “Functions”	 such	 as	 mathematical
manipulation	 and	 Standard	 Library.	 Moreover,	 there	 are	 complete	 guidance
about	 the	 selection	making	 of	 operators	 and	 logical	 data,	 concepts	 of	 Arrays,
Pointers,	Classes	and	Strings	in	C++.

While	 there	 are	 so	 many	 great	 programming	 languages,	 but	 C++	 is	 the	 most
favorite	 owing	 to	 have	 the	 privilege	 of	 the	 first	Object-Oriented	Programming
language.	Nowadays,	there	are	several	high-level	languages	with	simple	syntax
and	user-friendly	options.	Still,	programmers	can’t	deny	the	importance	of	C++
because	 of	 its	 huge	 number	 of	 open-source	 libraries,	 wide	 applications,	 and
highly	fast	run-time	performance.

This	guide	is	designed	for	beginners	who	want	to	learn	C++	in	7	days.	You	will
discover	this	language	by	making	your	programs	while	reading	this	book.

Chapter	1:	Introduction	to	C++	

In	 the	 following	 chapter,	 we	 will	 discuss	 about	 the	 evolution	 of	 computer
programming	languages	and	their	evolution	from	machine	languages.

As	we	know	C++	is	a	high-level	language.	We’ll	discuss	the	concepts	of	C++,	in
this	chapter.	Moreover,	you	will	be	able	to	write	your	first	program,	after	going
through	 this	 chapter,	 i.e.	 “Hello	 World”.	 Furthermore,	 you’ll	 understand	 the
concepts	of	Constants,	Variables,	Data	types	and	some	of	the	operators	that	may
help	you	writing	and	understanding	a	C++	program.

1.1	Background	of	C++

C++	is	considered	a	properly	structured	programming	language,	that’s	why	this
is	 so	popular.	C++,	 as	you	know,	 is	 a	 high	 level	 language	because	 it	 allows	 a
programmer	to	concentrate	on	the	problem	at	his	hand,	without	worrying	about
the	system	that	the	program	may	be	using.	There	are	many	languages	who	claim
to	be	system	or	machine	independent	but	C++	is	one	of	the	best	among	them.

Like	many	other	languages,	C++	is	basically	derived	from	ALGOL,	which	was
the	first	language	to	have	a	structure.	ALGOL	was	developed	in	the	early	1960s
and	it	made	a	path	for	structured	programming	and	its	concepts.	Very	first	work
in	ALGOL	was	done	by	two	scientists	name	as	Guiseppe	Jacopini	and	Corrado
Bohm.	Both	of	them	published	a	research	in	1960	which	defined	a	thorough	idea
of	structured	programming.

In	 1967,	 a	 computer	 scientist	 named	 as	Martin	 Richards	 designed	 a	 language
designed	 a	 programming	 language;	 he	 named	 Basic	 Combined	 Programming
Language	aka.	BCPL.	In	1970,	Ken	Thompson	developed	a	language,	known	as
“B”.	Following	him,	Dennis	Ritchie,	in	1972,	developed	the	concept	of	language
“C”.

Following	all	the	concepts	from	the	languages,	ALGOL,	BCPL,	B	and	C,	Bjarne
Stroustrup,	developed	C++	in	mid	1980s.

1.2	C++	Programming

Now,	when	you	know	about	the	background	of	C++,	i	guess,	you’ll	be	eager	to
write	your	first	program.	This	section	will	let	you	know	the	basic	parts	of	a	C++
program,	so	that	you’ll	be	able	to	write	your	very	first	program.

●							How	to	write	a	C++	program

First	of	all,	we	need	 to	understand,	 the	“Global	Declaration”.	Your	program	 is
considered	 a	 little	world;	 a	world	 of	 computer	 universe.	 So,	we	may	 start	 our
program	with	global	declaration.

Secondly,	only	one	function,	in	your	program	must	be	named	as	“main”.	Main	is
the	 starting	 of	 the	 basic	 program,	 after	 global	 declaration.	Main	 can	 have	 two
kinds	of	code;

●						Declaration

Declaration	 is	 considered	 the	 data	 that	 you	 may	 use	 to	 justify	 or	 write	 your
program	or	 function.	 If	you	declare	 something	 in	a	 function,	 it’ll	be	known	as
“Local	Declaration”.	We	call	them	local	declarations	because	they	are	read,	only
be	the	function	itself.

●						Statements

Statements	 are	 some	 commands	 to	 the	 machine	 that	 is	 using	 the	 program.
Statements	 cause	 the	 machine	 to	 perform	 the	 actions,	 such	 as	 adding	 or
subtracting	numbers,	multiply	them,	taking	their	average	etc.

●							Simple	Program

We	know	 that	C++	 allow	 us	 to	make	 declarations	 and	 statements	 at	 the	 same
time,	 but,	 every	 time,	 we	 should	 write	 a	 program,	 which	 should	 be	 well
organized		so	that	any	other	programmer	or	even	the	machine	could	understand
it	fast.	This	is	the	reason,	we	follow	the	language	C’s	concepts	of	organization.
The	 concept	 states	 that	 one	 should	 perform	 declaration	 first	 and	 statements
second.	 Moreover,	 most	 of	 the	 times,	 one	 should	 use	 comments	 for	 the
identification	of	the	sections;	Declarations	and	Statements.

A	C++	program	is	a	mixture	of	two	components	main	(Main)	and	fun	(function).
In	other	words,	function	is	called	or	used	by	main.	Usually,	we	write	the	code	for

the	“main”,	 first.	After	 that,	we’ll	code	 the	function	and	sub	functions,	 in	 their
order.

Moving	forward,	there	is	another	concept;	concept	of	preprocessor	directives	or
precompiler	directives.	These	are	some	statements	which	give	 instructions	 to	a
compiler	or	processor	to	execute	the	program	in	a	unique	pattern.

A	statement	which	is	globally	used	as	a	preprocessor	directive	is,	“include”.	This
statement	allows	the	compiler	to	extract	some	data	from	global	libraries,	known
as	header	 files.	Without	 these	header	 files	 or	 libraries,	 you	will	 not	 be	 able	 to
write	even	a	single	program,	because	it’ll	be	so	complex	to	write	the	commands
even	 for	 your	 input	 or	 output.	Even,	 you	will	 need	 an	 “include”	 command,	 to
write	your	very	first	program.	This	will	be	used	to	instruct	C++	that	you	will	be
in	need	for	the	input	and	output	libraries,	so	that	you	may	print	your	desired	data
to	the	console	screen.

●							Hello	World

Your	first	C++	program	is	going	to	be	very	straightforward.	It	will	include	just
one	precompiler	directive	and	no	global	or	 local	declaration	would	be	made.	It
will	just	display	a	greeting	to	the	user	on	a	console	screen.	Because	this	program
is	not	so	complex,	it	will	contain	only	two	statements;	first,	to	display	a	greeting,
the	second	one	would	be	used	to	terminate	our	program.

We	will	write	 the	precompiler	directive	 in	 the	very	beginning	of	our	program.
Precompiler	 directives	 must	 start	 with	 a	 number	 sign	 i.e.	 “#”,	 in	 any	 C++
program.	The	syntax	for	our	precompile	directive	would	be:

#include	<iostream.h>

In	this	precompiler	directive,	we	may	write	#	first	and	there	should	be	no	space
between	 “#”	 and	 “include”.	 Statement	 “include”	 will	 include	 the	 concerned
library	in	your	program,	which	will	be	mentioned	in	the	pointed	brackets	“<>”.

In	the	following	statement,	“iostream”	is	a	short	form	for	“input	output	stream”
and	“.h”	is	to	represent	header	file.

Moreover,	we’ll	use	another	statement	in	our	program	which	is:

using	namespace	std;
For	understanding	 this	 statement,	we	have	 to	 consider	 a	 classroom	with	 a	 boy
and	a	girl;	sharing	the	same	name	and	class,	but	having	different	functions.	So,

when	you	will	call	their	name,	both	will	respond.	The	very	same	confusion	can
be	a	part	of	programming,	as	if	there	is	a	function	named	as	“poi()”	and	in	some
other	library	there	is	another	function	named	as	“poi()”,	your	compiler	would	not
be	able	to	identify	your	desired	function.	To	overcome	this	difficulty	we	usually
use	this	statement.

Moving	 forward,	 our	 program’s	 executable	 part	 would	 be	 starting	 with	 a
function	header,	such	as:

Int	main	(void)

For	this	statement,	we	have	to	understand	that	 the	“int”	states	 that	 this	specific
function	will	send	back	an	 integer	value	 to	 the	machine	or	operating	system.In
the	 concerned	 statement,	 our	 function’s	 name	 is	 “main”	 and	 it	 has	 no	 specific
parameters,	as	we	have	voided	the	parameter	list	with	“(void)”.
Now,	 there	 are	 two	 more	 statements,	 with	 first,	 we	 will	 be	 able	 to	 print	 our
desired	data.	And	with	the	second,	we	will	be	able	to	terminate	the	program.

cout	<<		“Hello	world”;

This	 statement	 is	 used	 to	 display	 or	 print	 the	 desired	 data,	 in	 this	 case	 “Hello
World”.	This	statement	uses	an	operator	“<<”,	this	operator	allows	us	to	print	or
display	 data	 in	 our	 console.	 This	 statement	 contains	 inverted	 commas	 “”.
Whatever,	 you	 will	 be	 writing	 in	 these	 commas,	 will	 be	 displayed	 in	 your
console.

Finally,	the	program	will	be	terminated	with	a	statement:

return	0;

This	 statement	will	 simply	 end	 the	 program	 and	will	 hand	 over	 the	 control	 to
operating	system	again.
Now,	if	you	need	to	write	your	program,	you’ll	need	a	compiler	first.	There	are
many	 compilers	 available,	 online	 and	 offline,	 to	 execute	 your	 code	 in	C++.	 If
you	 need	 to	 compile	 your	 code	 offline	 Turbo	 C++	 and	 Dev	 C++	 are	 highly
recommended	and	if	you	need	to	compile	your	code	online,	you	may	search	for
any	online	C++	compiler.

Typically,	 the	 first	 program	 is	 known	 as	 “Hello	World”,	 but	we’ll	 change	 the
odds.	We	will	be	writing	our	first	program	as	“Hello	to	the	world	of	C++!”

So	if	you	have	a	compiler	now,	you	are	all	set	to	write	your	very	first	program.
We’ll	start	with	header	files	and	then	the	body	of	program	and	we	will	terminate

it	with	our	termination	statement.

So,	your	first	program	should	look	something	like	this:

#include	<iostream>

using	namespace	std;

int	main()

{
cout	<<	"Hello	to	the	world	of	C++!";

return	0;

}

When	 you’ll	 execute	 this	 program,	 there	will	 be	 a	 console	 screen	 popping	 up
with	the	text:

Hello	to	the	world	of	C++!

We’ve	 already	written	 our	 first	 program	 so	 now,	 we	will	 be	 discussing	 some
more	important	concepts	of	programming	in	C++.

1.3	Constants

The	 concept	 of	 constants	 in	 programming	 is	 very	 similar	 to	 the	 concept	 of
constant	 in	 Mathematics.	 Constants	 are	 the	 values	 or	 data	 which	 remains
unchanged	during	the	execution	of	a	code	or	program.

In	this	section,	we	will	define	different	types	of	constants	in	programming.

●							Integer	Constants

First	thing	first,	integers	are	stored	in	binary	formation.	You’ll	code	integers,	as
you	use	them	in	your	daily	routine,	for	example	you	will	code	eight	simply	as	8.

The	 following	 table	 will	 show	 you	 different	 integers,	 their	 values	 in
programming	and	their	data	types

Value	in	programming Number Data	Type

98 +98 int

-865 -865 int

-68495L -68495 long	int

984325LU 984325 unsigned	long	int

●							Character	Constants

Whenever,	 you’ll	 find	 an	 integer,	 closed	 between	 two	 single	 apostrophes,	 this
would	 be	 character	 constant.	 Moreover,	 there	 is	 a	 chance	 that	 you’ll	 find	 a
backslash	“\”	between	those	apostrophes.

For	most	machines,	ASCll	character	set	is	used,	i.e.

ASCII	Characters Symbolic	Display

Null	character “\0”

newline ‘\n’

horizontal	tab ‘\t’

alert	(bell) ‘\a’

backspace ‘\b’

form	feed ‘\f’

vertical	tab ‘\v’

single	quote ‘\’’

backslash ‘\\’

carriage	return ‘\r’

●							Float	Constants

Float	constants	are	stored	as	two	parts	in	memory	as	float	constants	are	numbers
having	decimal	parts.	The	first	part,	they	obtain	in	memory	is	significand	and	the
second	is	exponent.

Float	constant’s	default	type	is	“double”.	You	must	write	a	code	to	specify	your
desired	data	 type,	 i.e.	 “float”	 or	 “long	double”.	We	may	 remember	 that	 “f”	or
“F”	is	used	to	represent	float	and	“l”	or	“L”	is	used	to	represent	long	double.

In	the	following	table,	some	of	the	examples	of	float,	double	and	long	double.are
shown:

Value	in	Programming Number Data	Type

.0 0.00 double

0. 0.00 double

3.0 3.0 double

5.6534 5.6534 double

-3.0f -3.0 float

5.6534785674L 5.6534785674 long	double

●							Boolean	Constants

These	constants	are	predefined	keywords	and	they	can	not	be	defined	or	declared
by	 the	 programmer.	 It	 has	 two	 predefined	 constants,	 “True”	 and	 “False”.	 In
programming,	we	represent	this	kind	of	constant	as	“bool”.

●							Programming	Constants

In	 this	 part,	we	 are	 going	 to	 understand	 different	 programming	 constants,	 and
ways	 to	write	 and	define	constants	 in	a	C++	program.	Usually,	 there	are	 three
types	of	programming	constants.

●						Defined	Constants

A	way	to	define	a	constant	in	a	C++	program	is	to	use	a	precompiler	statement
“define”.	 Like	 every	 other	 precompiler	 directive,	 it	 starts	 with	 a	 “#”.	 For
example,	a	traditional	precompiler	directive	for	“define”	would	be:

#define	TABLE_SIZE	150

Define	 directives	 are	 usually	 placed	 in	 the	 beginning	 of	 the	 program,	 so	 that
anyone	reading	your	program,	can	find	them	easily.

●						Memory	Constants

Another	way	to	code	constants	is	by	using	a	memory	constant.	These	constants
use	a	C++	type	qualifier	to	remember	that	the	specified	data	can	not	be	changed.

C++	 programming	 provides	 us	with	 an	 ability	 to	 define	 named	 constants.	We
just	have	to	add	type	qualifier	in	our	code,	before	constant.	For	example:
Code	:

#include	<iostream>

using	namespace	std;		

#define	val	50

#define	floatVal	9.7

#define	charVal	'K'
int	main()

{

cout	<<	"Integer	Constant	in	our	code:	"	<<	val	<<	"\n";

cout	<<	"Floating	point	Constant	 in	our	code:	"	<<	floatVal
<<	"\n";

cout	 <<	 "Character	 Constant	 in	 our	 code:	 "<<	 charVal	 <<
"\n"	;

return	0;

}

Output	:

In	the	case	of	this	code,	a	console	screen	will	pop	up	with	the	output:

Integer	Constant	in	our	code:	50

Floating	point	Constant	in	our	code:	9.7
Character	Constant	in	our	code:	K

●						Literal	Constants

Literal	constant	is	a	constant	which	is	unnamed	and	used	to	specify	your	desired
data.	As	we	know	constant	can	not	be	changed	so	we	just	have	to	code	its	data
value	in	a	statement.

Literal	constant	 is	 the	most	common	form	of	constant.	Here	 is	a	 table	 to	show
different	kind	of	literal	constants.

Values Type

‘C’ Character	Literal

7 Numeric	Literal	7

C	+	8 Another	Numeric	Literal	(8)

5.6534 Float	Literal

Hello String	Literal

1.4	Data	Type

A	data	type	defines	a	set	of	operations	and	values	that	have	the	ability	to	apply
on	the	concerned	values.	For	example,	a	switch	of	a	light	bulb	can	be	compared
to	a	computer	system	as	it	has	two	different	values;	True	as	On,	and	False	as	off.
Since	the	bulb	switch	contain	just	these	two	values,	we	can	consider	its	size	as
two.	There	are	just	two	operations	that	can	be	done	with	a	bulb	switch:

●						We	can	turn	it	On
●						We	can	turn	it	Off

In	a	C++	program,	functions	have	their	own	unique	types.	Usually,	a	function's
type	is	specified	by	the	data	it	 returns.	C++	usually	contains	five	standard	data
types:

●						void	(Void)

●						Int	(Integer)

●						char	(Character)

●						bool	(Boolean)
●						float	(Floating	Point)

●							void	(Void)

In	C++,	void	has	no	operations	or	no	functions.	In	simpler	words,	both	the	set	of
operations	 and	 the	 set	 of	 values	 are	 empty.	 It	 is	 a	 very	 useful	 data	 type	 in
programming	although	it	seem	unusual.	Typically,	 it	 is	a	generic	data	type	that
can	represent	any	other	standard	data	types.

●							int	(Integer)

In	C++,	integer	is	a	number	without	having	a	fraction	part,	we	usually	call	it	an
integral	number.	Our	concerned	language	supports	three	types	of	integers	as	its
data	types:

●						short	(Short	Integer)

●						Int	(Integer)

●						long	(Long	Integer)

C++	allows	us	to	use	an	operator	“size	of”,	that	may	tell	us	the	size	of	our	data
types.	Whenever,	we	are	coding	in	C++,	we	should	keep	this	statement	in	mind:

sizeof	(long	int)	=>	sizeof	(int)	=>	sizeof	(short	int)

●							char	(Character)

We	usually	think	of	characters	as	the	alphabet	or	numbers,	but	programming	has
its	another	definition.	By	this	definition	a	character	can	be	any	number,	value	or
symbol	that	can	be	represented	by	the	machine	or	computer’s	alphabets.
Moreover,	we	have	to	remember	that	C++	usually	treat	characters	as	an	integer
because	it	uses	memory	as	an	integer	i.e.	between	0	to	255.

●							bool	(Boolean	-	logical	data	in	C++)

Boolean	 data	 types	 has	 two	 functions,	True	 and	False.	Traditionally,	 a	 zero	 is
considered	as	false	and	any	non-zero	part	is	considered	as	true.

●							float	(Floating	Point)

Float	data	 type	or	 floating	point	 is	usually	a	data	 type	having	a	fractional	part.
When	coding	in	float	data	type,	we	should	always	consider	this	statement:

sizeof	(long	double)	=>	sizeof	(double)	=>	size	of	(float)

We	may	 think	 that	 the	data	 type,	 float	and	data	 type,	 integer	are	 the	same,	but
there	are	many	differences	as	the	“float”	is	always	declared	in	a	C++	program.

Data	Types Implementations

Void void

Integer Unsigned	 short	 int,	 unsigned	 int,
unsigned	 long	 int,	 short	 int,	 int,	 long
int

Character char

Floating	point float,	double,	long	double

Boolean bool

1.5	Variables

Variable,	 in	 C++	 are	 memory	 locations,	 having	 different	 data	 types,	 such	 as
character	 or	 integers.	Variables	 are	manipulatable	 and	 changeable	 because	 the
use	a	set	of	different	operations.

●							Variable	Initialization

By	using	an	initializer,	we	can	declare	and	initialize	a	variable	at	the	very	same
time.	 Basically,	 initializer	 set	 up	 the	 variable’s	 very	 first	 value.	 Usually,	 an
identifier	is	followed	by	a	“=”	sign	to	first	initialize	and	then	define	a	variable’s
initial	value,	when	the	function	starts.	Simple	syntax	of	initialization	is:
Int	count	=	0

Moving	forward,	we	have	to	keep	in	mind	that	whenever	a	variable	is	defined,	it
is	not	automatically	 initialized.	The	programmer	should	be	 the	one	 to	 initialize
any	variable,	when	the	program	starts.

●							Variable	Declaration

Every	 variable,	 in	 a	 program,	 must	 be	 defined	 and	 declared.	 In	 C++,	 we	 use
Definition	 to	 create	 different	 objects	 and	 we	 use	 Declaration	 to	 name	 those
objects.	Whenever	a	programmer	creates	a	variable,	definition	reserves	memory
for	it	and	definition	assigns	it	a	symbolic	name.	Variables,	when	assigned,	hold
data	that	is	required	by	the	program	to	fulfil	its	task.

In	 C++,	 multiple	 variable	 of	 the	 similar	 types	 can	 be	 declared	 in	 a	 single
statement.	 Many	 programmers	 use	 this	 technique	 but	 we	 won’t	 be
recommending	 this	as	 this	 is	not	 a	good	programming	 technique.	This	 reduces
the	 efficiency	 of	 program	 and	 the	 efficiency	 for	 the	 execution	 process	 of
compiler.

1.6	Programming	Examples

Problem	1

We	 read	 about	 the	 ASCII	 character	 set,	 print	 your	 desired	 character	 ASCII
values	from	A	to	Z.

Solution	:

#include<iostream>

using	namespace	std;

int	main	()

{
char	a;

cout	<<	"Enter	your	desired	character	to	print	its	value:	";

cin	>>	a;

cout	<<	"According	 to	ASCII	 character	 set,	 value	of	 "	<<	a	<<"	 is	 :	 	 "	<<
(int)a;

return	0;

}
Output	:

When	you	will	execute	this	program,	a	console	screen	will	pop	up	with	this	text:

Enter	your	desired	character	to	print	its	value:

You	simply	have	to	 type	your	desired	alphabet	 to	print	 its	value.	Let's	say	you
want	 to	 print	 the	 value	 of	 “G”.	Simply	 type	 “G”	 and	press	 “Enter”	 key.	Your
program	will	 print	 the	 value	 of	 “G”	 according	 to	ASCII	 character	 set.	 It	will,
somehow,	look	like	this:

According	to	ASCII	character	set,	value	of	"G"	is	:	71

Problem	2

Write	 a	 program	 in	 C++	 that	 uses	 five	 output	 statements	 to	 print	 the	 pattern

shown	below.

A

AA

AAA
AAAA

AAAAA

Solution	:

#include	<iostream>

using	namespace	std;

int	main()
{

cout	<<	"A"<<	endl;

cout	<<	"AA"<<	endl;

cout	<<	"AAA"<<	endl;

cout	<<	"AAAA"<<	endl;

cout	<<	"AAAAA";

return	0;
}

Output	:

When	 you	 execute	 this	 code,	 a	 console	 screen	 will	 pop	 us	 with	 your	 desired
pattern,	i.e.

A

AA
AAA

AAAA

AAAAA

1.7	Exercise	Sets

●	 	 	 	 	Write	a	C++	Program	by	using	“cout”	or	output	 statements	 to	print	 the
initials	 of	 your	 name	 in	 block	 letters.	 Program	 should	 not	 read	 any
alphabet	from	your	keyboard.	Each	letter	should	be	formed	by	using	seven
columns	and	five	rows,	using	the	letter	itself.	For	example	if	your	name	is
“Faheel”,	your	output	should	be	something	like	this:
FFFFFFF

F

FFFF

F

F

●	 	 	 	 	Write	 a	 C++	 program	 to	 read	 an	 integer,	 character	 and	 floating	 point.
Program	should	print	each	of	these	on	a	separate	line.

●	 	 	 	 	Write	a	program	in	C++	that	allows	the	user	to	enter	three	numbers	and
them	it	prints	 those	numbers	vertically	(one	in	a	 line),	 first,	 in	ascending
order	and	then	in	descending	order,	as	Shown	in	below	example:

Output	:

First,	your	console	should	print	a	line	saying:

Please	enter	any	three	random	numbers:

After	entering	numbers,	let's	say	10,	50,	17,	it	should	print:
Your	numbers	in	ascending	order:

10

17

50

Your	numbers	in	descending	order:

50
17

10

Chapter	2:	How	to	write	a	C++	program

C++	have	three	unique	features	that	sets	it	apart	from	most	of	the	programming
languages:

●						Expressions
●						Pointers

●						Classes

In	this	chapter	we	will	discuss	the	very	first	of	these	concepts,	i.e.	Expressions.
We	 have	 already	 used	 expressions	 in	 Mathematics,	 but	 the	 way	 to	 use
expressions	 is	 unique	 to	 “C++”	 and	 its	 precursor	 “C”.	 The	 concept	 of
expressions	 is	 tied	 to	 the	 concept	 of	 precedence,	 operators,	 statements	 and
associativity.

2.1	Expressions

Expression,	 in	 a	 C++	 program,	 is	 a	 sequence	 of	 operators	 and	 operands	 that
eventually	reduces	to	a	single	value.	For	example,	10	*	2.
In	the	following	example,	the	expression	reduces	to	20.	In	C++,	final	value	can
be	of	any	data	type,	other	than	void.

●						Operators

Operators	are	the	language	specific	syntactical	tokens	that	require	some	action	to
be	 performed.	Many	 operators	 are	 derived	 from	 the	 concepts	 of	Mathematics.
For	 example	 “Sign	 of	 Multiplication	 (*)”	 is	 an	 operator	 used	 in	 C++.	 It
multiplies	two	numbers.

Every	 programming	 language	 has	 unique	 operators	 to	 perform	 unique
operations.

●						Operand

For	any	defined	operator,	there	may	be	one	or	more	than	one	operands.	Operand
has	to	receive	any	operator’s	action.	In	above	example,	(10	*	2),	Multiplier	and
Multiplicand	are	the	operands	of	Multiplication.

There	is	no	limit	of	operand	sets	and	operators	to	form	an	expression.	The	only
rule	 is	 that	when	program	will	evaluate	 the	expression,	 the	answer	should	be	a

single	value,	that	may	represent	the	expression.

●							Primary	Expressions	in	a	C++	Program

In	C++,	most	initiatory	kind	of	expressions	are	Primary	Expressions.It	contains
just	one	operand	and	no	operator.	We	have	to	remember	that	operand	can	be	a
name,	parenthetical	expression	or	a	constant	in	Primary	Expression.

●						Names
It	is	an	identifier	which	defines	a	function,	a	variable	or	any	other	object	in	C++.

●						Constants

Another	 type	 of	 primary	 expressions	 are	 Constants.Constants	 are	 the	 pre
recognized	or	declared	data	whose	value	is	unchangeable	during	the	compilation
and	execution	of	a	program.

●						Parenthetical	Expressions

Last	 kid	 of	 primary	 expression	 is	 parenthetical	 expression.It	 is	 a	 primary
expression	 because	 its	 value	 is	 always	 reducible	 to	 a	 single	 value.	 So,	 the
complex	 expression	 in	 a	 parenthetical	 expression	may	 be	 bound	 to	 make	 it	 a
primary	expression.

●							Binary	Expressions	in	C++

Binary	 expressions	 in	 C++	 are	 typically	 formed	 by	 operand-operator-operand
relation.	These	expressions	are	the	most	common.	Any	two	numbers	subtracted,
multiplied,	divider	or	added	are	written	with	the	operator	between	two	operands.
Or	may	be	in	algebraic	expressions.	Most	common	types	or	binary	expressions
are:

●						Additive	Expressions

First	 type	 of	 binary	 expressions	 is	 additive	 expressions.	 In	 this	 kind	 of
expression,	second	operand	is	added	to	the	first	operand	or	the	second	operand	is
subtracted	 from	 the	 first	 operand.	 It	 depends	 upon	 the	 operator,	 that	 is	 used.
These	kinds	of	expressions	use	parallel	algebraic	notations	for	example,	a	+	18
and	b	-	90.	Here	are	two	sample	programs	to	show	such	kind	of	expressions:

For	Addition	:

#include	<iostream>

using	namespace	std;

int	main()

{

//	Declaration	of	integers
int	firstinteger,	secondinteger,	sum;

//	Printing	input	and	output	commands			

cout	<<	"Enter	any	integer:	";

cin	>>	firstinteger;

cout	<<	"Enter	another	integer:	";

cin	>>	secondinteger;
//	Sum	of	two	integers	is	stored	in	the	variable	"sum"

sum	=	firstinteger	+	secondinteger;

//	Printing	sum	of	first	and	second	integer

cout	<<	firstinteger	<<	"	+	"	<<		secondinteger	<<	"	=	"	<<	sum;				

return	0;

}

For	Subtraction	:
#include	<iostream>

using	namespace	std;

int	main()

{

//	Declaration	of	integers

int	firstinteger,	secondinteger,	sub;
//	Printing	input	and	output	commands	

cout	<<	"Enter	any	integer:	";

cin	>>	firstinteger;

cout	<<	"Enter	another	integer:	";

cin	>>	secondinteger;

//	Subtraction	of	second	integer	from	first	is	stored	in	the	variable	"sub"

sub	=	firstinteger	-	secondinteger;

//	Printing	the	subtraction		of	second	integer	from	first	integer
cout	<<	firstinteger	<<	"	-	"	<<		secondinteger	<<	"	=	"	<<	sub;				

return	0;

}

●						Multiplicative	Expressions

This	 expression	 is	 known	 as	 multiplicative	 expression	 because	 of	 its	 first
operator,	 i.e.	Multiplication.	We	 consider	 it	 on	 top,	 in	 binary	 expressions.	 Its
value	is	calculated	as	the	product	of	two	operands,	i.e.	5	*	2	=	10.

In	 such	 expressions,	 division	 is	 a	 little	 more	 complex.	 In	 division	 if	 both
operands	are	integers,	the	result	would	be	the	integral	value	of	quotient.	It	would
be	expressed	as	an	integer,	i.e.	5	/	2	=	2.	Here	are	two	sample	programs	to	show
such	kind	of	expressions:
For	Multiplication	:

#include	<iostream>

using	namespace	std;

int	main()

{

//	Declaration	of	integers

int	firstinteger,	secondinteger,	mul;
//	Printing	input	and	output	commands			

cout	<<	"Enter	any	integer:	";

cin	>>	firstinteger;

cout	<<	"Enter	another	integer:	";

cin	>>	secondinteger;

//	Product	of	two	integers	is	stored	in	the	variable	"mul"
mul	=	firstinteger	*	secondinteger;

//	Printing	sum	of	first	and	second	integer

cout	<<	firstinteger	<<	"	*	"	<<		secondinteger	<<	"	=	"	<<	mul;				

return	0;

}
For	Division	:

#include	<iostream>

using	namespace	std;

int	main()

{

//	Declaration	of	integers
int	firstinteger,	secondinteger,	div;

//	Printing	input	and	output	commands	

cout	<<	"Enter	any	integer:	";

cin	>>	firstinteger;

cout	<<	"Enter	another	integer:	";

cin	>>	secondinteger;

//	 Integral	 value	 of	 quotient	 in	 division	 of	 first	 integer	 and	 second	 integer	 is
stored	in	the	variable	"div"

div	=	firstinteger	/	secondinteger;

//	Printing	the	subtraction		of	second	integer	from	first	intege	r

cout	<<	firstinteger	<<	"	/	"	<<		secondinteger	<<	"	=	"	<<	div;				

return	0;

}

●							Assignment	Expressions

Assignment	expression	is	an	expression	which	usually	evaluates	the	operands	on
the	right	side	of	an	equation	and	automatically	places	its	value	to	the	variable	on
the	left	side.There	are	two	types	of	assignment	expressions:

●						Simple	Assignment

Simple	assignment	 is	a	form	of	assignment	expressions	which	is	present	 in	 the
form	of	algebraic	expressions	such	as	x	=	60	,	y	=	n	+	20	,	z	=	x	+	y.

The	thing	to	remember,	in	a	simple	assignment,	is	that	the	left	operand	should	be
a	single	variable.	In	such	expressions,	the	value	of	the	right	side	is	evaluated	and
it	 becomes	 the	 value	 of	 the	 entire	 expression.	 In	 the	 following	 table	 there	 are
some	examples	of	simple	assignment	and	how	its	value	is	calculated.

Expression Value	of	“n” Value	of	“m” Value	 of
Expression

Result	 of
Expression

n	=	m	-1 20 15 14 14

n	=	m	+	20 20 15 35 35

n	=	m	*	0 20 15 0 0

●						Compound	Assignment

Compound	 assignment	 is	 considered	 as	 a	 shorthand	 writing	 for	 the	 simple
assignment.	In	this	case,	left	operand	should	be	repeated	in	the	right	side.

To	 evaluate	 a	 compound	 assignment,	 machine	 first	 changes	 it	 into	 simple
assignment	 and	 then	 performs	 the	 operations	 to	 identify	 the	 final	 result	 of	 the
expression.

In	the	following	table,	it	is	shown	that	how	a	compound	assignment	is	converted
into	a	simple	assignment:

Compound	Assignment Simple	Assignment

n	%=	m n	=	n	%	m

n	/=	m n	=	n	/	m

n	*=	m n	=	n	*	m

n	-=	m n	=	n	-	m

n	+=	m n	=	n	+	m

In	 the	 following	 table	 there	 are	 some	 examples	 of	 compound	 assignment	 and
how	its	value	is	calculated.

Expression Value	of	“n” Value	of	“m” Calculation
of
Expression

Result	 of
Expression

n	%=	m 20 15 n=(20/100)*
15

3

n	/=	m 20 15 n	=	20	/	15 1.33

n	*=	m 20 15 n	=	20	*	15 300

n	-=	m 20 15 n	=	20	-	15 5

n	+=	m 20 15 N	=	20	+	15 35

In	C++,	we	use	compound	assignments	as:

For	Addition	:

#include<iostream>

using	namespace	std;
int	main()

{

int	n	=	5,	m	=	2;

//Compound	assignment	expression	n	+=	m	means	n	=	n	+	m

n	+=	m;

cout	<<	n	<<	endl;
return	0;

}

For	Subtraction	:

#include<iostream>

using	namespace	std;

int	main()

{
int	n	=	5,	m	=	2;

//Compound	assignment	expression	n	-=	m	means	n	=	n	-	m

n	-=	m;

cout	<<	n	<<	endl;

return	0;

}

For	Multiplication	:

#include<iostream>

using	namespace	std;

int	main()
{

int	n	=	5,	m	=	2;

//Compound	assignment	expression	n	*=	m	means	n	=	n	*	m

n	*=	m;

cout	<<	n	<<	endl;

return	0;
}

For	Division	:

#include<iostream>

using	namespace	std;

int	main()

{

int	n	=	5,	m	=	2;
//Compound	assignment	expression	n	/=	m	means	n	=	n	/	m

n	/=	m;

cout	<<	n	<<	endl;

return	0;

}

●							Postfix	Expressions

In	C++,	postfix	expressions	operates	just	after	the	primary	expression,	followed
by	an	operator.

●						Function	call

Function	call	is	an	elementary	component	in	structured	programming.	Function
call	 is	 basically	 a	 postfix	 expression.In	 such	 expressions,	 operand	 is	 the
function’s	name	and	it	follows	its	operator.	We	have	to	remember	that	function
call	always	have	some	value	so	it	can	be	used	in	other	expressions,	except	from
void.

●						Postfix	Increment	and	Postfix	Decrement

Both	 postfix	 increment	 (n++)	 and	 postfix	 decrement	 are	 postfix	 operators.
Usually	every	program,	in	C++	require	the	value	1	to	be	added	in	its	variable.	In
most	of	the	programming	languages,	this	can	be	done	in	binary	expressions.

C++,	on	the	other	hand	provides	its	programmer	an	ability	to	code	this	 in	both
binary	as	well	as	unary	expressions.
In	 postfix	 increment,	 the	 variable	 increases	 its	 value	 by	 1.	 So,	 “n++”	 is
calculated	as	the	variable	“n”	being	increased	by	“1”.	This	expression	is	similar
as	assignment	expression:

n++	means	that	n	=	n	+	1

On	 the	other	 hand,	 postfix	 decrement	 (n--)	 also	have	values	 and	 results	 but	 in
this	case,	machine	reduces	your	variable	(n)	by	1	i.e.	n	-	1.

Postfix
Expressions

Value	 of	 n
(Before)

Evaluation	 of
Expression

Value	 of	 n
(After)

n-- 20 20	-	1 19

n++ 20 20	+	1 21

For	Postfix	Increment	:

#include	<iostream>

using	namespace	std;

int	main()
{

int	n,	a;

cout	<<"Enter	any	integer:	";

cin	>>	n;

a	=	n++;

cout	<<	"Post	Increment	Operation:"<<endl;
//	Value	of	a	will	not	change

cout	<<	"a	=	"	<<	a	<<	endl;

//	Value	of	n	will	change	after	execution	of	a=n++;

cout	<<	"n	=	"	<<	n;		

return	0;

}

For	Postfix	decrement	:
#include	<iostream>

using	namespace	std;

int	main()

{

int	n,	a;

cout	<<"Enter	any	integer:	";
cin	>>	n;		

a	=	n--;

cout	<<	"Post	Increment	Operation:"<<endl;

//	Value	of	a	will	not	change

cout	<<	"a	=	"	<<	a	<<	endl	;

//	Value	of	n	will	change	after	execution	of	a=n--;

cout	<<	"n	=	"	<<	n;

return	0;
}

2.2	Statements

In	C++	any	action	performed	by	a	program	is	caused	by	statements.	It	translates
the	executable	commands	into	machine	language.	In	C++	there	are	six	kinds	of
statements:

●						Expression	statement

●						Compound	Statement
●						Labeled	Statement

●						Iterative	Statement

●						Selection	Statement

●						Jump	Statement

Most	 important	 among	 them	 is	 compound	 statement	 and	expression	 statement.
We	will	be	discussing	these	two	statements	in	this	section.

●							Expression	Statement

In	C++,	any	expression	can	be	turned	into	a	statement,	by	placing	a	semicolon
“;”	after	it.	Whenever	a	C++	compiler	sees	a	semicolon,	it	evaluates	the	value	of
expression,	 saves	 it	 in	 variable	 and	 discards	 it	 before	 compiling	 the	 next
argument	or	statement.	Just	consider	an	expression	statement	to	be:
n	=	69

It	means	that	the	vale	of	this	expression	is	69.	The	compiler	will	save	the	value
69	 in	 the	 variable	 “n”.	 After	 storing	 69	 in	 “n”,	 compile	 will	 terminate	 this
expression	 and	will	 discard	 its	 value.	 Then	 compiler	will	 continue	 to	 the	 next
statement.	However,	the	value	of	“n”	will	remain	stored	in	“n”.

Example	Program	:

#include	<iostream>

using	namespace	std;

int	main()
{

//	declaration	statement

int	n	=	69,	m;

cout	<<	"Enter	the	value	of	m:	";

cin	>>	m;

//	expression	statement
n	=	n	+	1;

//	expression	statement

std::cout	<<	"n	=	"	<<	n	<<	'\n';

//	return	statement

return	0;

}

A	bit	more	complex	statement	in	expression	statements	can	be:
n	=	m	=	69;

This	statement	consists	of	two	statements.	If	we	factorize	this	statement,	we	will
see	the	expressions	clearly

n	=	(m	=	69);

The	 compiler	will	 assign	 the	 value	 69	 to	 “m”	 during	 the	 compilation	 process.
After	evaluating	“m”,	the	compiler	will	 terminate	and	discard	the	value	of	“m”
and	then	will	start	to	calculate	the	value	of	“n”.	After	the	compiler’s	execution	of
this	statement,	69	will	stored	in	both	the	variables	“m”	and	“n”.

Moving	forward,	consider	a	postfix	expression	as	an	expression	statement,	i.e.:

n++
In	 this	 expression,	 the	 value	 of	 expression	 is	 69.	 It	 is	 also	 the	 value	 of	 	 our
variable	 “n”,	 before	 it	 is	 increased	 by	 1.When	 the	 compiler	 will	 execute	 the

statement,	 the	 value	 of	 the	 variable	 “n”	 will	 be	 70.	 But	 the	 value	 of	 the
expression,	i.e.	69,	will	be	terminated.

Moreover,	 we	 have	 a	 special	 type	 of	 expression	 statement	 known	 as	 null
expression.	This	 expression	 statement	has	no	value	and	no	 side	effect	 and	 this
can	be	very	useful	in	some	compex	statements.	Null	expression	is	represented	as
a	single	semicolon.

;

●							Compound	Statement

In	C++,	a	compound	statement	is	a	coding	unit	consists	of	some	statements	or	no
statement.	We	may	also	call	compound	statement;	a	block.	This	statement	allows
many	statements	 to	execute	as	a	 single	unit.	While	writing	your	 first	program,
you	 used	 a	 compound	 statement,	 i.e.	 while	 writing	 the	 body	 of	 the	 function
main.	 In	 C++,	 every	 program	 has	 a	 compound	 statement	 in	 it,	 which	we	 call
function	body.

Every	compound	statement	have	some	parts	in	it,	i.e.

●						Opening	Brace	“{”

●						Declaration	and	Definition	(Optional)

●						Statement	Section	(Optional)

●						Closing	Brace	“}”

As	we	mentioned	 that	declaration,	definition	and	 statement	 section	 is	optional,
but	one	one	them	must	be	present	in	your	compound	statement.	Otherwise,	there
would	be	no	need	of	a	block.
As	for	your	first	program,	the	compound	statement	was:

{	//	Opening	Brace

cout	<<	"Hello	to	the	world	of	C++!";	//	Statement

return	0;	//		Return	Statement

}	//	Closing	Brace

We	have	to	remember	that,	semicolon,	after	this	statement	is	not	needed.	If	you
place	 a	 semicolon	 after	 the	 closing	 brace,	 compiler	 will	 consider	 it	 a	 syntax
error.

Furthermore,	we	have	to	remember	that	we	may	declare	and	define	a	statement
anywhere	 in	 a	 block	 but	 it	 makes	 the	 program	 so	 difficult	 to	 read	 and
understand.	Declaration	and	definition	of	a	statement	on	the	top	of	the	block	is
considered	 a	 good	 programming	 technique.	 It	 allows	 a	 programmer	 to	 read,
understand,	 rewrite	 and	 maintain	 a	 C++	 program	 easily.	 We	 may	 also	 put
comments	“//”	in	a	block	to	remember	the	statements.	For	example:

{	//	Opening	Brace

//	declaration	statement

int	n	=	69,	m;
cout	<<	"Enter	the	value	of	m:	";

cin	>>	m;

//	expression	statement

n	=	n	+	1;

//	expression	statement

std::cout	<<	"n	=	"	<<	n	<<	'\n';
//	return	statement

return	0;

}	//	Closing	Brace

2.3	Programming	Examples

Problem	-	1

Your	 program	must	 read	 four	 integers	 from	 the	 keyboard,	 calculate	 their	 sum
and	their	average	and	it	should	print	the	answer	on	the	screen.

Solution	:

#include	<iostream>

using	namespace	std;

int	main()

{
float	n,	m,	o,	p,	sum,	average;

cout	<<	"Enter	first	number:	";

cin>>n;

cout	<<	"Enter	second	number:	";

cin>>m;

cout	<<	"Enter	third	number:	";
cin>>o;

cout	<<	"Enter	fourth	number:	";

cin>>p;

sum=n+m+o+p;

average=sum/4;

cout	<<	"The	sum	of	"	<<	n	<<	"	and	"	<<	m	<<	"	and	"	<<	o	<<	"	and	"	<<
p	<<	"	is:	"	<<	sum	<<	endl;

cout	<<	"The	average	of	"	<<	n	<<	"	and	"	<<	m	<<	"	and	"	<<	o	<<	"	and
"	<<	p	<<	"	is:	"	<<	average	<<	endl;
}

Output	:

When	you	execute	this	program,	a	console	screen	will	pop	up	with	a	line:

Enter	first	number:

After	entering	your	desired	number,	let's	say	“69”,	the	program	will	ask	for	the
second	number:

Enter	second	number:
After	entering	your	second	number,	which	is	“69”,	as	well,	the	program	will	ask
for	the	third	number:

Enter	third	number:

Consider	 you	 entered	 69	 again,	 as	 the	 third	 number.Program	will	 demand	 the
fourth	number:

Enter	fourth	number:

Just	say	that	you	entered	69	again,	as	the	fourth	number.

Your	program	will	add	all	of	your	entered	numbers	and	then	divide	their	sum	on
4.	After	calculating	It	will	print:
The	sum	of	69	and	69	and	69	and	69	is:	276

The	average	of	69	and	69	and	69	and	69	is:	69

Problem-2

Your	 program	 must	 read	 the	 temperature	 in	 Celsius	 and	 change	 it	 into
Fahrenheit,	using	the	following	equation:

Celsius	=	(100	/	180)	*	(Fahrenheit	-	32)

Solution	:

We	have	to	convert	this	formula	manually	to	find	the	amount	of	Fahrenheit.	So
from

Celsius	=	(100	/	180)	*	(Fahrenheit	-	32)

We	may	Calculate:
Celsius	=	(5	/	9)	*	(Fahrenheit	-	32)

(9	*	Celsius)	/	5	=	(Fahrenheit	-	32)

((9	*	Celsius)	/	5)	+	32	=	Fahrenheit

Fahrenheit	=	((9	*	Celsius)	/	5)	+	32

Now,	using	this	formula,	we	may	write	our	program.

#include<iostream>
using	namespace	std;

int	main()

{

float	fa,	ce;

cout	<<	"Enter	the	temperature	in	Celsius	:	";

cin	>>	ce;

fa	=	((9.0	*	ce)	/	5.0)	+	32;
cout	<<	"	Your	entered	temperature	in	Celsius	:	"	<<	ce	<<	endl;

cout	<<	"Temperature	in	Fahrenheit																			:	"	<<	fa	<<	endl;

return	0;

}

Output	:

When	you	execute	this	program,	a	console	screen	will	pop	up	saying:

Enter	the	temperature	in	Celsius	:

After	putting	your	desired	 temperature,	 let's	 say	78,	 the	program	will	 calculate
according	to	the	formula	and	will	give	out	the	output	as:

Your	entered	temperature	in	Celsius		:	78
Temperature	in	Fahrenheit																			:	172.4

2.4	Exercise	Sets

●					Write	a	program	that	reads	a	measurement	in	Inches	and	print	the	values	in

●						Foot	i.e.	12	Inches

●						Centimeter	i.e.	2.54	/	inch
●						Meter	i.e.	39.37	Inches

●						Yard	i.e.	36	Inches

●	 	 	 		Write	a	program	that	reads	length	and	width	of	a	rectangle	from	user	and
calculates	the	area	of	the	rectangle.

●					Write	a	program	that	should	read	the	temperature	in	Fahrenheit	and	change
it	into	Celsius,	using	the	following	equation:

Celsius	=	(100	/	180)	*	(Fahrenheit	-	32)

Chapter	3:	Concept	of	“Functions”	in	C++

We	were	 learning	 the	 very	basic	 concepts	 of	C++	 till	 now.	The	programs,	we
made	were	able	to	perform	one,	two	or	a	very	few	tasks,	at	one	time.	They	were
not	able	to	perform	too	many	tasks,	simultaneously.

Now,	if	we	consider	a	larger	program,	we	can	not	deal	with	it	without	breaking	it
into	sub	parts.
For	example,	you	have	to	visit	all	the	museums	of	some	city	in	a	week	and	then
you	have	to	make	a	report	of	them.	What	would	you	do!

●						You	will	gather	data	about	the	museums

●						You	will	calculate	the	distance	between	museums

●						You	will	make	a	route	that	would	suit	you

●						You	will	estimate	your	time

Now,	programming	of	the	larger	programs	follow	the	same	process.	At	first,	you
need	 to	 understand	 what	 the	 problem	 is.	 Then,	 you	 may	 break	 your	 larger
program	 into	 smaller	 parts	 or	 modules.	 This	 programming	 style,	 basically,	 is
known	as	structured	Programming.

3.1	Structured	Programming	and	Designing

In	Structured	programming,	it	 is	defined	that	a	program	must	be	divided	into	a
few	modules	and	it	can	be	further	subdivided	into	many	other	modules.

In	the	following	chart,	we	may	learn	about	how	structured	programming	works:

First	of	all,	we	have	a	program	that	we	have	to	develop.	In	this	case,	we	break	it
into	two	parts,	i.e.	Module	A	and	module	B.	Moving	forward,	Module	B	is	sub
dividen	in	two	sub	modules,	Module	B-1	and	Module	B-2.

So,	 we	 can	 think	 that	 Module	 B-1	 and	 Module	 B-2	 are	 the	 smaller	 parts	 of
Module	B	and	Module	A	and	Module	B	are	the	sub	modules	of	a	larger	program.

Our	program	will	work	by	calling	different	modules.	For	 example,	 if	we	want
module	A	 to	 send	data	 to	module	B,	Both	modules	will	 communicate	 through
the	 main	 program.	We	 have	 to	 remember	 that	 direct	 communication	 between
two	 modules	 is	 not	 possible	 if	 they	 don't	 have	 a	 calling-called	 relationship.
Moreover,	 a	 module,	 in	 structured	 programming	 can	 be	 called	 by	 only	 one
higher	module.	This	allows	data	to	pass	through	a	function	and	this	technique	is
known	as	parameter	passing.

3.2	Functions	in	C++

In	C++,	module	and	submodules	are	known	as	functions.	In	every	C++	program,
there	should	be	one	or	more	functions	and	one	of	 them	must	be	main.	Main	 is
the	key	 function,	 your	program	must	 start	 and	 end	on	main	 and	main	 can	 call
other	functions,	if	necessary.

A	 function	 is	 an	 independent	 module	 that	 is	 called	 to	 perform	 some	 specific
tasks.	 In	C++,	 function	 can	 return	 a	 value	 to	 the	 caller.	 In	 a	 program,	main	 is
called	 by	 the	OS	 (operating	 system),	 after	 that	main	 is	 responsible	 for	 calling
other	 functions.	When	main	performs	 its	 task,	 the	 control	 then	 returns	back	 to
the	operating	system.

Generally,	the	task	of	a	function	is	to	receive	data,	works	on	it	and	returns	it	in	a
compiled	form.	With	its	pros,	function	can	have	side	effects	as	well.	A	function
can	 change	 the	 state	 of	 a	 program.as	 it	 may	 reduce	 efficiency	 of	 a	 program.
Moreover,	receiving	and	returning	data	 to	an	outside	source	and	to	change	any
variable’s	value	can	be	a	function’s	side	effects.

C++	provides	a	large	use	of	functions	in	it	as	functions	can	be	used	to	factorize	a
program.	 Secondly,	 functions	 can	 be	 helpful	 if	 you	 want	 to	 use	 the	 same
function	 in	many	parts	of	your	program.	For	example,	 if	you	want	 to	calculate
the	average	of	five	random	numbers.	So	instead	of	coding	all	the	time,	you	may
develop	a	function	and	can	call	it,	whenever	you	need	it.

To	understand	the	coding	for	functions,	we	may	have	a	look	at	this	code:

#include	<iostream>
using	namespace	std;

//	Function	declaration

int	mul	(int,int);

//	Main	Function

int	main()

{
//	Function	Call

cout<<mul(1,99);

return	0;

}

/*	Function	is	defined	after	the	main	method	*/

int	mul(int	num1,	int	num2)

{
int	num3	=	num1*num2;

return	num3;

}

●							User	Defined	Functions

Functions	must	be	declared	and	defined,	 like	any	other	object	 in	C++.	In	C++,
we	 can	 declare	 a	 function	 by	 the	 declaration	 of	 prototype.	The	 definition	 of	 a
function	contains	a	code	to	perform	some	specific	tasks.	We	may	understand	it
with	this	example:

#include	<iostream>

//	Declaration	of	Prototype

Int	mul	(int,	int)
Int	main	()

{

//	Local	declarations

………….

//	Statements

………….
//	Calling	of	a	function	can	be	done	in	statements

cout<<mul(1,99);

………….

………….

return	0;

}

//	Definition	of	a	function	is	done	after	the	calling	function
int	mul(int	num1,	int	num2)

{	//	Statements

int	num3	=	num1*num2;

return	num3;	//	Multiplication

}

●							Function	Definition

The	definition	of	a	function	is	based	upon	the	code	for	a	function.	In	C++,	it	has

two	parts:

●						Function	Header

●						Function	Body

Function	 body	 is	 a	 compound	 statement,	 we	 have	 to	 keep	 in	mind	 that	 every
complex	 statement	 must	 have	 an	 opening	 brace,	 declarations,	 statements	 and
closing	brace.	The	definition	of	function	should	be	like:
//	Function	Header

return_type	function	name	(parameter	list)

//	Function	Body

{

//	Local	Declarations

………….
//	Statements

………….

//	Function	Name

…..

……….

}

●						Function	Header
A	function	header	has	three	parts:

●						Return	Type

●						Function	Name

●						Parameter	List

A	 semicolon	 is	 not	 allowed	on	 the	 end	of	 it,	 otherwise,	 there	will	 be	 a	 syntax
error.

In	 function	 header,	 if	 the	 return	 type	 is	 not	 perfectly	 coded,	 the	 compiler	will
assume	it	an	integer.	If	you	are	not	returning	anything	in	your	code,	you	have	to
code	the	return	type	as	void.

●						Function	Body

Generally,	a	function	body	has	two	main	parts;	Declarations	and	Statements.	It
starts	 with	 local	 declarations	 and	 the	 declaration	 of	 variables.	 Following	 the
declarations,	 statements	 are	 coded.	 Statement	 section	 ends	 with	 a	 return
command.	 If	 a	 function	 is	 returning	 a	 void-type,	 It	 can	 be	 written	 without	 a
return	command,	but	it	is	a	good	practice	to	still	use	it.

For	Example:

//	The	function’s	return	type	have	to	be	defined

int	one	(...)
{

………….

………….

………….

return	(n	+	69);

}	//	First
void	two	(...)

{

………….

………….

………….

//	We	have	to	use	a	return	statement,	even	if	nothing	is	returned

return;
}	//	Second

In	the	above	example,	the	function	“one”	is	declared	to	return	an	integer,	so	its
return	statement	have	 the	expression	 (n+69)	 .When	 this	 statement	 is	compiled,
this	expression	is	calculated	and	the	result	is	returned.

For	function	“two”,	it	returns	nothing.	Void	is	its	return	type,	so	it	doesn't	need
any	return	statement.	In	this	case,	it	is	executed	just	with	a	semicolon.

●							Prototype	Declaration

Prototype	 declarations	 contain	 no	 code	 and	 consist	 of	 only	 a	 function	 header.
Prototype	headers	are	also	consist	of	three	parts:

●						Function	Name

●						Parameter	List

●						Return	Type
Unlike	 the	 function	 headers,	 prototype	 declarations	 are	 terminated	 with	 a
semicolon.	 In	 a	 C++	 program,	 it	 is	 placed	 before	 main,	 in	 global	 declaration
area.

For	parameters,	C++	does	not	 require	any	 identifier	names,	but	 readability	and
understandability	is	increased	is	you	use	names	for	them.	We	have	to	remember
that	if	types	are	not	the	same,	you	will	receive	a	syntax	error	because	compiler
checks	types	before	compiling	a	code,	so	they	have	to	be	compatible.

We	have	to	remember	that:

●	 	 	 	 	 Formal	 parameters	 are	 the	 variables	 which	 are	 declared	 in	 the
function	header.

●					Formal	parameters	and	actual	parameters	should	have	the	same	data
type,	number	and	order.	However,	their	names	can	differ.

●	 	 	 	 	Actual	 parameters	 are	 the	 expressions	 in	 function	 body’s	 calling
statements.

An	example	for	prototype	declaration	is:

Int	add(int	1,	int	2);

●							Function	Call

In	C++,	function	call	is	always	a	postfix	expression.	We	have	to	remember	that
in	 primary	 expressions,	 postfix	 expressions	 are	 on	 the	 highest	 level.	 So,	 if	 a
function	is	used	by	a	larger	program,	compiler	will	calculate	and	execute	it	first,
until	we	command	it	to	perform	some	different	tasks	first.

In	 a	 function	 call,	 operand	 is	 the	 function	 name,	 which	 consists	 of	 actual
parameters.	These	parameters	evaluates	and	decides	the	values	that	are	to	be	sent
to	call	our	desired	function.

For	example:

#include	<iostream>

#include	<cmath>

using	namespace	std;

int	main()
{

double	n,	m;

cout	<<	"Enter	your	desired	number:	";

cin	>>	n;

//	sqrt()	is	a	library	function	to	calculate	square	root

m	=	sqrt(n);
cout	<<	"Square	root	of	"	<<	n	<<	"	=	"	<<	m;

return	0;

}

In	another	example,	we	can	understand	it	clearly:

#include	<iostream>

using	namespace	std;

//	Prototype	declaration	of	a	function
int	add(int,	int);

int	main()

{

int	n,	m,	o	;

cout<<"Enters	first	number:	";

cin	>>	n;
cout<<"Enters	second	number:	";

cin	>>	m;

//	Function	call

o	=	add(n,	m);

cout	<<	"Sum	of	your	desired	numbers	=	"	<<	o;

return	0;

}

//	Function	definition
int	add(int	a,	int	b)

{

int	add;

add	=	a	+	b;

//	Return	statement

return	add;
}

●							Void	Functions	with	no	Parameters

Any	function	without	parameters	should	be	called	with	empty	parentheses.	We
have	 to	 remember	 that	 these	 parentheses	 are	 the	 function	 call	 operators,	 as
shown	below

Hello	();

In	the	above	mentioned	example,	the	function	hello	receives	nothing	and	returns
nothing	as	well.	It	has	a	side	effect,	that	it	displays	a	message.	This	function	is
just	called	for	that	side	effect.	For	example:

#include	<iostream>

//	Function	Declaration
Hello	(void);

Int	main	(void)

{

//Statements

……

//	Function	call

Hello();

return;

}

//	Function	Definition
void	Hello(void)

{

cout<<”Hello	to	C++”

return;

}	//	Greeting	print

●							Void	Functions	with	Parameters

Now	there	is	another	function	that	can	return	void	type	and	have	parameters.	In
the	 example,	 given	 below,	 our	 function	 Printints	 receives	 two	 parameters,	 in
integer	type.	It	returns	nothing	to	main,	so	its	type	is	void.	Typically,	it	is	called
stand	alone	postfix	as	 it	does	not	 return	any	value.	We	have	 to	 remember	 that
Printints	 returns	 no	 value,	 so	 its	 side	 effect	 allows	 it	 to	 print	 both	 integers	 on
screen.

●							Function	Example

Problem	:

Write	a	program	which	reads	an	integer	from	user	and	prints	the	least	significant
(right	most)	digit.
Solution	:

#include	<iostream>

using	namespace	std;

//	Prototype	Declarations

int	n	(int	m);

int	main	()

{
cout	<<	"	Enter	an	integer:	";

int	m	;

cin		>>	m;

int		digit	=	n	(m);

cout	<<	"	Least	Significant	digit	is:	"<<	digit	<<	endl;

return	0;
}	//	main

/*	=============	First	Digit	=================*/

//	This	function	extracts	the	least	significant

//	Digit	of	an	integer

//	Pre		"m"	contains	an	integer

//	Post	Returned	least	significant	digit													
int	n	(int	m)

{

return	(m	%	10);

}	//	First	Digit

3.3	Default	Parameter	Arguments

C++	provides	us	with	the	capability	to	define	default	values	for	the	parameters.
In	 C++,	 default	 values	 are	 used	 as	 the	 initializers.	 When	 such	 a	 function	 is
called,	 compiler	 uses	 default	 values	 to	 initialize	 the	 compilation	 process.	 We
have	to	remember	that	coding	of	default	parameters	in	the	prototype	statement	of
a	 function	 provides	 more	 efficiency	 and	 documentation	 to	 the	 function.	 For
Example:

#include	<iostream>

using	namespace	std;

void	display(char	=	'*',	int	=	1);

int	main()

{

cout	<<	"No	Argument	passed:	"	;

display();				

cout	<<	"First	Argument	passed:	";

display('#');				

cout	<<	"Both	Arguments	passed:	";
display('$',	5);

return	0;

}

void	display(char	c,	int	n)

{

for(int	i	=	1;	i	<=	n;	i++)
{

cout	<<	c;

}

cout	<<	endl;

}

3.4	Programming	Examples

Problem	-	1

Write	a	C++	program	to	determine	whether	the	entered	number	is	even	or	odd.

Solution	:

#include	<iostream>

using	namespace	std;

int	v(int);	//	function	prototype

int	main()
{

int	n;

cout<<"Enter	a	number:	";

cin>>n;

if	(v(n))	//	function	call	by	value

cout<<n<<"	is	even";
else

cout<<n<<"	is	odd";

return	0;

}

int	v(int	m)	//	function	definition

{

int	w;
if	(m%2	==	0)

w=1;

else

w=0	;

return	w;

}

Output	:

When	you	will	compile	this	code,	a	console	screen	will	pop	up	with	a	text:

Enter	a	number:
If	you	enter	an	even	number,	let’s	say	68,	screen	will	show:

68	is	even

And,	if	you	put	an	odd	number,	let's	say	69,	your	screen	will	display:

69	is	even

Problem	-	2

Write	a	C++	program	using	functions	to	swap	two	values.

Solution	:

#include	<iostream>

#include	<conio.h>

using	namespace	std;

void	swap(int	&,	int	&);	//	function	prototype

int	main()

{
int	n,m;

cout<<"Enter	your	first	number:	";

cin>>n;

cout<<"Enter	your	second	number:	";

cin>>m;

cout<<"Your	Numbers,	Before	swapping:	"<<endl;
cout<<"First	Number	=	"<<n<<endl;

cout<<"Second	Number	=	"<<m<<endl;

swap(n,m);	//	function	call	by	reference

cout<<"Your	Numbers,	After	swapping"<<endl;

cout<<"First	Number	=	"<<m<<endl;

cout<<"Second	Number	=	"<<n<<endl;

getch();
return	0;

}

void	swap(int	&v,	int	&w)	//	function	definition

{

v=v+w;

w=v-w;

v=v-w;

}
Output	:

When	you’ll	compile	this	code,	a	console	screen	will	pop	up	with	a	text:

Enter	your	first	number:

After	entering	your	first	value,	let’s	say	169,	your	program	will	further	ask	you:

Enter	your	second	number:

After	you	enter	your	second	number,	let’s	say	29,	your	program	will	print:
Your	Numbers,	Before	swapping

First	Number	=	169

Second	Number	=	29			

Your	Numbers,	After	swapping

First	Number	=	29

Second	Number	=	169

3.5	Exercise	Sets

●					Write	a	C++	program	to	print	the	result	in	a	function.	For	this,	use	two	sub
functions	 to	 display	 results.	 One	 sub	 function	 would	 be	 printing	 the
results,	the	other	one	should	print	the	measurements	and	charges.

To	test	your	program,	use	the	data	shown	below:

Sr	no. Length Width Discount Price

1 43 33 23 25.60

2 36 9 1 9

3 16 13 12 24.25

●					Write	a	C++	program	which	reads	the	lengths	of	two	sides	of	a	right	angle
triangle	and	calculates	its	area	and	perimeter.

These	formulas,	may	be	helpful,	writing	your	code:

	=	 	+

Area	=	0.5	*(N	*	M)

Chapter	4:	Selection-Making

In	 this	 chapter,	 we	 will	 study	 about	 “Selection”.	 Selection	 is	 the	 second
fundamental	 of	 structured	 programming.	 Selection	 allows	 a	 user	 to	 select
between	two	or	more	alternatives	in	any	function.	So,	we	may	say	that	In	C++,
selection	allows	us	to	make	decisions.

In	 our	 daily	 life,	we	 face	many	 issues,	when	we	have	 to	make	 a	 decision,	 for
example,	 we	 have	 to	 select	 between	 strawberry	 and	 chocolate	 ice	 cream,	 or
maybe	 we	 have	 to	 select	 between	 black	 or	 brown	 shoes.	 Imagine	 our	 world,
without	selection,	how	boring	it	would	be!
So,	 moving	 towards	 the	 point,	 in	 this	 chapter,	 we	 will	 know	 about	 how	 the
selection	is	made	by	a	computer	program.	We	have	to	remember	that	the	choices
made	by	a	computer	are	really	simple.	Computer	makes	selection	in	binary	form,
i.e.	0	and	1.	Typically,	0	is	used	as	false	or	off	and		1	is	used	as	true	or	on.

4.1	Logical	Data	and	Operators

We	may	call	 any	data	 logical,	 if	 it	 conveys	 the	 idea	of	 true	 and	 false.	Logical
Data	is	a	very	important	factor	in	programming	as	well	as	in	real	life.

As	 far	as	our	 lives	are	concerned,	sometimes,	we	have	 to	make	 tough	choices,
based	upon	 logical	 data,	 i.e.	 true	or	 false.	For	 example,	 let	 us	 say,	 if	 someone
calls	you	and	asks	you,	“Are	you	at	home?”.	You	would	have	two	choices,	“Yes!
I	am	home”	or	“No!	 I	am	not.”	This	would	 lie	under	0	 (false)	and	1	 (true),	 in
programming.

In	programming,	we	may	ask,	 if	 variable	 “n”	 is	 greater	 than	 “m”.	The	 answer
would	be	0	(No)	or	1	(yes).

●							Logical	Data	in	C++

In	 C++,	 we	 may	 represent	 logical	 data	 in	 two	 manners.	 Firstly,	 we	 may	 use
boolean	data	(bool)	with	constant	identifiers,	true	and	false.	On	the	other	hand,
we	 may	 use	 other	 data	 types,	 such	 as	 integers	 (int)	 and	 characters	 (char)	 to
represent	logical	data.	If	an	item	is	zero	among	the	data,	it	would	be	considered
as	false.

●							Logical	Operators

In	C++,	usually	we	have	 three	 logical	operators.	We	can	use	 them	 to	combine
and	create	 logical	values	such	as	not,	or	and	and.These	operators	are	shown	in
table	below:

Operator Demonstration

! not

&& Logical	and

|| Logical	or

●						Not	Operator

It	is	a	unary	operator.	Not	operator	“!”	changes	a	1	(true)	value	to	0	(false)	or	a	0
(false)	to	1	(true).

●						And	Operator
It	 is	 binary	 operator.	 And	 operator	 is	 a	 binary	 operator,	 so	 that,	 it	 has	 four
distinct	possible	combinations	of	values.	 In	 this	operator,	 the	 resulting	value	 is
true	only	if	both	operands	are	true.

●						Or	Operator

Or	Operator	“||”	is	also	a	binary	operator.	Like	and	operator,		or	operator	also	has
four	possibilities.	But	 in	 this	operator’s	case,	 the	 result	would	be	 false,	only	 if
both	operands	are	false.

To	understand	these	operators	use	in	C++,	we	may	use	these	tables	below

Not	operator	“!”

Logical

n !n

false true

true false
C++	Language

n !n

zero non	zero

non	zero zero

And	Operator	(&&)	:

Logical

n m n	&&	m

true true true

true false false

false true false

false false false
C++	Language
n m n	&&	m

non	zero non	zero non	zero

non	zero zero zero

zero non	zero zero

zero zero zero

Or	Operator	(||)	:

Logical

n m n	&&	m

true true true

true false true

false true true

false false false
C++	Language
n m n	&&	m

non	zero non	zero non	zero

non	zero zero non	zero

zero non	zero non	zero

zero zero zero

●							Evaluating	Logical	Expressions

Compiler	can	evaluate	binary	relationships,	usually	with	two	methods.	The	only
difference	in	these	methods	is	about,	if	we	need	to	evaluate	the	full	expression	or
a	part	of	it.

In	 the	 first	 method,	 the	 compiler	 will	 evaluate	 the	 whole	 expression,	 even	 if
there	 is	 no	 need	 of	 it.	 For	 example,	 in	 the	 case	 of	 and	 operator,	 the	 entire
statement	will	 be	 evaluated	 by	 the	 compiler,	 even	 if	 the	 first	 operand	 is	 false.
Similarly,	in	the	case	of	Or	operator,	compiler	will	go	for	the	full	relation,	if	the
first	operand	is	true.
In	 the	 second	method,	 a	 programmer	 can	 set	 a	 code	 up	 to	 print	 the	 resulting
value	as	soon	as	the	compiler	knows	the	result.	If	this	method,	the	compiler	does
not	need	 to	go	 through	full	expression.	 It	will	print	 false,	as	 soon	as	 it	 reads	a
false	statement	in	the	case	of	and	operator.	Similarly,	it	will	print	true,	as	soon	as
it	reads	a	true	statement,	in	case	of	or	operator.

The	first	method	was	used	by	pascal	computer	language	and	the	second	method
was	 introduced	 by	C++	 itself.	As	we	 can	 see,	 the	 second	method	 seems	more
efficient	but	it	may	have	some	problems	because	of	the	side	effects	of	the	second
operand.	Usually,	it	causes	because	of	poor	programming	skills,

So,	now,	you	know!	Practice	makes	a	man,	Perfect!

For	better	understanding	of	the	evaluation	of	logical	data,	in	C++,	we	can	have	a
look	at	this	code:

#include	<iostream>
using	namespace	std;

main()	{

int	n	=	5;

int	m	=	20;

int	o;

if(n	&&	m)
{

cout	<<	"For	line	1	-	Condition	is	true"<<	endl	;

}

if(n	||	m)

{

cout	<<	"For	line	2	-	Condition	is	true"<<	endl	;

}
/*	Let's	change	the	values	of	n	and	m	*/

n	=	0;

m	=	10;

if(n	&&	m)

{

cout	<<	"For	line	3	-	Condition	is	true"<<	endl	;
}

else

{

cout	<<	"For	line	4	-	Condition	is	not	true"<<	endl	;

}		
if(!(n	&&	m))

{

cout	<<	"For	line	5	-	Condition	is	true"<<	endl	;

}		

return	0;

}

●							Relation	Operators

In	C++,	we	have	six	relational	operators	to	support	logical	relationships.	All	of
them	are	binary	operators	that	can	accept	two	operands	and	can	compare	them.

Operator Meaning

< Less	than

<= Less	than	or	equal	to

> Greater	than

>= Greater	than	or	equal

== Equals	to

!= Not	Equals

We	 have	 to	 remember	 that	 every	 operator	 among	 them	 is	 the	 complement	 of
another,	for	example	if	we	want	to	evaluate	an	expression	involving	not	and	less
than	expression,	we	may	use	greater	than	and	equal	to	operators,	instead	of	that.
We	can	understand	this	relation	using	this	table.

Original Simplified

!	(n	<	m) n	>=	m

!	(n	>	m) n	<=	m

!	(n	!=	m) n	==	m

!	(n	<=	m) n	>	m

!	(n	>=	m) n	<	m

!	(n	==	m) n	!=	m

Now,	just	look	at	a	simple	program	to	understand	it,	according	to	C++
#include<iostream>

using	namespace	std;

int	main()

{

int	n=10,m=20,o=10;

if(n>m)
cout<<"n	is	greater"<<endl;

if(n<m)

cout<<"n	is	smaller"<<endl;

if(n<=o)

cout<<"n	is	less	than	or	equal	to	m"<<endl;

if(n>=m)

cout<<"n	is	less	than	or	equal	to	m"<<endl;
return	0;

}

4.2	Two	Way	Selection

Usually,	 any	decision	 statement	 in	a	computer	 is	known	as	 two	way	selection.

Decision	is	presented	to	the	computer,	a	conditional	statement	and	computer	can
answer	it	as	true	or	false.

In	 such	 conditions,	 if	 the	 answer	 is	 true,	 an	 action	 or	 a	 set	 of	 actions	 is
performed.	On	 the	 other	 hand,	 if	 the	 answer	 is	 false,	 different	 action	or	 set	 of
actions	is	performed.

●							If,	Else

In	 C++,	 two	 way	 selection	 is	 implemented	 with	 an	 if	 else	 statement.	 If	 else
statement	 is	a	statement,	used	 to	make	selection	between	 two	alternatives.	 It	 is
coded	as
If	(expression)

{

Statements

}

Else

{

Statements
}

Here	are	some	points,	we	have	to	keep	in	mind	about	if	else	statements:

●					The	expression	after	if	statement	must	be	closed	in	parentheses.

●					We	don’t	need	semicolon	for	the	statements	in	if	else	statements.

●						In	if	else,	expressions	can	have	side	effects.
●					Both	if	and	else	statements	can	be	any	statement,	ornull	statement.

●					Among	if	and	else	only	one	statement	can	be	true	at	a	time

●							Rules	for	If	Else	statements

The	 first	 rule,	 as	 mentioned	 earlier	 is	 that	 the	 expression	 in	 if	 else	 statement
should	be	closed	in	parentheses.	Second	rule	is	so	simple	but	it	can	cause	a	lot	of
problems.	To	explain	that	rule,	we	have	to	look	at	the	example	below.

if	(n	==	69)

N++;

else
n--;

In	 this	 example,	 each	 action	 that	 is	 to	 be	 performed	 is	 a	 single	 statement	 that
simply	adds	or	subtracts	1	from	the	variable	n.	The	rule	is;	we	have	to	remember
that	 the	 semicolons	 in	 above	 mentioned	 statements	 belong	 to	 arithmetic
statements,	not	to	if	or	else.

Third	rule,	we	are	going	to	discuss,	is	a	bit	more	complex.	In	C++,	it's	a	common
activity	to	code	expressions	having	side	effects,	for	example,	most	of	the	times
data	is	coded	that	have	side	effects	to	read	or	print	data.

Let's	suppose,	we	have	written	a	line	and	we	want	to	proceed	towards	next	line
after	we	have	written	twenty	numbers.	A	simple	solution	would	be	to	increment
line	count	and	tests	the	limit,	in	the	very	same	statement.	Fo	example

If	(++lineCnt	>	10)

{
cout	<<	“\n”;

lineCnt	=	o

}	//	End	Print	New	Line

else

{

cout	<<	“.....”;

}
The	fourth	and	fifth	rules	for	if	else	statements	are	closely	tied	to	each	other.	We
know	 that	 any	 statement	 can	 be	 used	 in	 if	 else	 condition	 but	 we	 have	 to
remember	that	it	is	a	good	practice	to	use	a	compound	statement	for	a	complex
logic.

Problem	:

To	 understand	 if	 else	 statement	more	 precisely,	 we	may	write	 a	 program	 that
reads	an	integer	and	prints	weather	the	integer	in	positive	or	negative.

Solution	:

#include	<iostream>

using	namespace	std;

int	main()
{

int	n;

cout	<<	"Enter	an	integer:	";

cin	>>	n;

//	checks	if	the	integer	is	positive

if	(n	>	0)

{

cout	<<	"You	have	entered	a	positive	integer:	"	<<	n	<<	endl;
}

else

{

cout	<<	"You	have	entered	a	negative	integer:	";

}

return	0;
}

●							Null	Else	Statement

In	 programming,	 after	 taking	 a	 decision	 there	 are	 two	 possible	 actions.
Typically,	 the	action	with	a	false	statement	 is	 the	one	that	 is	 left	out.	Letts	say
you	are	taking	an	average	of	ten	numbers,	but	your	requirement	states	that	every
number	 among	 them	should	be	greater	 than	zero.	So,	when	your	program	will
read	the	numbers	from	your	keyboard,	before	compiling	a	result,	it	will	test	your
entered	 numbers.	 If	 the	 test	 is	 true	 or	 in	 other	 words	 if	 all	 the	 numbers	 are
greater	than	zero,	your	program	will	take	their	average.	If	the	result	is	false,	your
program	will	terminate	and	do	nothing.

In	above	mentioned	scenario,	 if	condition	 is	not	 required.	So,	we	can	say,	 if	 is
null	in	this	case.	In	C++,	we	call	this	condition	a	null	else	statement.	We	have	to
remember	 that	 typically,	 a	 null	 statement	 have	only	one	 semicolon,	while	 else
statement	is	simple	omitted	entirely.	For	example

if	(expression)

{

Statements
……..

}

In	C++,	false	statement	can	be	omitted	but	a	true	statement	can	never	be	omitted.
Most	of	the	times,	true	statement	will	always	be	coded	as	a	null	statement.	We
have	 to	 keep	 in	 mind	 that	 the	 null	 else	 statement	 is	 not	 a	 branch	 of	 if	 else
statement.	To	further	understand	the	formation	of	a	null	else	statement,	we	have
to	look	at	the	example	below

If	Else	Statement	:

if	(expression)

;
Else

{

……

…...

}

Null	Else	Statement	:
if	(!expression)
{
Statements
………..
}
else
;	//	Null	Else	Statement
Here	is	a	programming	example	to	demonstrate	two	way	selection.

Problem	:

We	 have	 to	write	 a	 C++	 program	 that	may	 read	 three	 integers	 from	 user	 and
print	the	highest	among	them.

Solution	:

#include<iostream>

#include<conio.h>

using	namespace	std;
int	main()

{

	int	n,	m,	o,	maximum;

	cout<<"Enter	first	number:	";

	cin>>n;

	cout<<"Enter	second	number:	";
	cin>>m;

	cout<<"Enter	third	number:	";

	cin>>o;

	maximum	=	n;

	if(m>maximum)

	{
	maximum	=	m;

	}

	if(o>maximum)

	{

	maximum	=	o;

	}

	 cout<<"\n"<<"The	 largest	 of	 your	 entered	 numbers	 is:	 "
<<maximum;

	getch();

}

●							Nested	If	Statements

Previously,	we	have	learned	that	the	if	else	statements	may	be	any	statements,	it
can	 include	 other	 if	 else	 statements	 as	 well.	 So,	 when	 an	 “if	 else	 statement”
includes	another	if	else	statement,	this	is	known	as	a	nested	if	statement.	There	is
no	 specific	 limit	 for	 how	many	 levels	 in	 an	 “if	 else”	 can	be	 nested,	 but	 if	 the
nesting	 level	 is	 increased	 by	 three,	 it	 normally	 reduces	 the	 readability	 and
understandability	of	the	code.	To	understand	nested	if	statements,	we	may	take	a
look	on	this	coding	example.

if	(expression)

{

if	(expression)

{
Statements

………………..

}

else

{

Statements
…………

}

else

{

statements

}

}

4.3	Multiway	Selection

Many	programming	 languages	provides	us	another	 selection	method,	 i.e.	multi
way	selection.	This	allows	a	program	to	choose	among	many	alternatives.

In	C++,	there	are	two	major	ways	to	apply	multi	way	selection.	First	method	is
known	 as	 switch	 statement,	 other	 is	 known	 as	 else	 if	 statement.	 	 Switch
statement	 is	 applicable	only	when	 the	 selection	 reduces	 to	an	 integral	value	or
expression.	Moving	forward,	most	of	the	times,	selection	is	based	upon	the	range
of	 values.	 In	 this	 case,	 the	 condition	 is	 not	 integral	 and	we	 use	 else	 if	 in	 this
scenario.

●							The	Switch	Statement

Switch	statement	is	composite	statement	used	to	make	a	decision	between	many
statements.	In	this	case,	the	selection	condition	must	be	in	integral	type.	For	this
statement,	any	expression	can	be	used	but	unary	expression	is	the	most	common.

Switch	expression	have	conditions	that	we	can	evaluate	for	every	possible	value
that	 can	 be	 the	 result	 from	 this	 condition,	 separate	 case	 constants	 are	 defined.
With	every	case,	there	are	one	or	more	associated	statements.

To	understand	switch	statement,	we	may	see	the	following	syntax

Switch	(expression)

{

case	constant	-	1	:	statement
…….

statement

case	constant	-	2	:	statement

…….

statement

case	constant	-	n	:	statemen	t
…….

statement

default																			:	statement

…….

statement

}	//	End	Switch

●							Else	If	Statement

Switch	statement	works,	when	and	only	when	the	case	values	are	 integers.	We
will	need	else	if	statement	if	we	need	a	multi	way	selection	in	a	non	integer	data.
C++	 has	 no	 concepts	 of	 “else	 if	 statements”	 in	 it.	 It	 is	 a	 programming	 style,
basically.

In	“else	if	statement”,	we	code	else	if	on	a	single	line	and	align	it	with	a	previous
if	statement.	The	syntax	for	this	style	looks	something	like

If	(n	>=	90)

discount	=	‘V’;

Else	if	(n	>=	80)

discount	=	‘K’;
We	have	 to	 remember	 that	 else	 if	 statement	 is	only	used	when	 the	 same	basic
expression	is	being	evaluated.

In	C++,	else	if	is	an	artificial	construct,	that	is	only	used	when

●						The	selection	variable	is	a	non	integer

●						The	same	variable	is	being	tested	in	the	expression.

●							Example	Program

Problem	:
Write	a	C++	program	that	reads	an	integer	value	from	0	to	99999	and	prints	the
amount	of	digits,	your	number	have.

Solution	:

#include	<iostream>

using	namespace	std;

int	main(){

int	num;

cout<<"Enter	an	integer	number	between	1	&	99999:	";

cin>>num;
if(num	<100	&&	num>=1)	{

cout<<"Its	a	two	digit	number";

}

else	if(num	<1000	&&	num>=100)	{

cout<<"Its	a	three	digit	number";

}
else	if(num	<10000	&&	num>=1000)	{

cout<<"Its	a	four	digit	number";

}

else	if(num	<100000	&&	num>=10000)	{

cout<<"Its	a	five	digit	number";

}

else	{
cout<<"number	is	not	between	1	&	99999";

}

return	0;

}

4.4	Menu	Program,	C++

Problem

Write	a	C++	program	that	reads	operand	and	operator	from	the	user	and	prints
the	answer.

Solution	:

#include	<iostream>

using	namespace	std;

int	main()
{

char	o;

float	n,	m;

cout	<<	"Enter	an	operator	(+,	-,	*,	/):	";

cin	>>	o;

cout	<<	"Enter	first	operand:	";
cin	>>	n;

cout	<<	"Enter	second	operand:	";

cin	>>	m;

switch	(o)

{

case	'+':

cout	<<	n	<<	"	+	"	<<	m	<<	"	=	"	<<	n+m;
break;

case	'-':

cout	<<	n	<<	"	-	"	<<	m	<<	"	=	"	<<	n-m;

break;

case	'*':

cout	<<	n	<<	"	*	"	<<	m	<<	"	=	"	<<	n*m;
break;

case	'/':

cout	<<	n	<<	"	/	"	<<	m	<<	"	=	"	<<	n/m	;

break;

default:

//	operator	is	doesn't	match	any	case	constant	(+,	-,	*,	/)

cout	<<	"Error!	operator	is	not	correct";

break;
}				

return	0;}

Output	:

When	you	will	compile	this	code,	a	console	screen	will	pop	up	saying
Enter	an	operator	(+,	-,	*,	/):

After	entering	operator,	let’s	say	/,	your	program	will	ask	for	your	operands,	one
by	one,	as

Enter	first	operand:

Enter	second	operand:

Let’s	 say	 you	 have	 entered	 both	 operands,	 2.	 Your	 program	will	 print	 output
such	as

2	/	2	=	1

4.5	Programming	Examples

Problem

Write	 a	 C++	 program	 for	 banking	 management	 system.	 Your	 code	 should
include	cases	and	selection.

Solution	:

#include<iostream>

#include<iomanip>

#include<fstream>

#include<cctype>
using	namespace	std;

class	acnt

{

	int	acno;

	char	name[50];

	int	deposit;
	char	type;

public:

	void	create_acnt();

	void	show_acnt()	const;

	void	modify();

	void	dep(int);

	void	draw(int);
	void	report()	const;

	int	retacno()	const;

	int	retdeposit()	const;

	char	rettype()	const;

};

void	acnt::create_acnt()

{

	cout<<"\nEnter	The	account	No.	:";
	cin>>acno;

	cout<<"\n\nEnter	The	Name	of	the	account	Holder	:	";

	cin.ignore();

	cin.getline(name,50);

	cout<<"\nEnter	The	Type	of	account	(C/S)	:	";

	cin>>type;
	type=toupper(type);

	cout<<"\nEnter	The	Initial	amount(>=500	for	Saving	and	>=1000
for	current)	:	";

	cin>>deposit;

	cout<<"\n\n\nAccount	Successfully	Created..";

}

void	acnt::show_acnt()	const

{
	cout<<"\nAccount	Number	:	"<<acno;

	cout<<"\nAccount	Holder	:	";

	cout<<name;

	cout<<"\nType	of	The	Account	:	"<<type;

	cout<<"\nAccount	Balance	:	"<<deposit;

}
void	acnt::modify()

{

	cout<<"\nAccount	No.	:	"<<acno;

	cout<<"\nModify	Account	Holder	Name	:	";

	cin.ignore();

	cin.getline(name,50);

	cout<<"\nModify	Type	of	Account	:	";

	cin>>type;
	type=toupper(type);

	cout<<"\nModify	Balance	amount	:	";

	cin>>deposit;

}

void	acnt::dep(int	x)

{
	deposit+=x;

}

void	acnt::draw(int	x)

{

	deposit-=x;

}

void	acnt::report()	const
{

	 cout<<acno<<setw(10)<<"	 "<<name<<setw(10)<<"	 "
<<type<<setw(6)<<deposit<<endl;

}

int	acnt::retacno()	const

{

	return	acno;
}

int	acnt::retdeposit()	const

{

	return	deposit;

}

char	acnt::rettype()	const

{

	return	type;
}

void	write_acnt();

void	display_sp(int);

void	modify_acnt(int);

void	delete_acnt(int);

void	display_all();
void	deposit_withdraw(int,	int);

void	intro();

//Main	Function	for	our	Program

int	main()

{

	char	ch;

	int	num;
	intro();

	do

	{

	system("cls");

	cout<<"\n\n\n\tMAIN	MENU";

	cout<<"\n\n\t01.	NEW	ACCOUNT";
	cout<<"\n\n\t02.	DEPOSIT	AMOUNT";

	cout<<"\n\n\t03.	WITHDRAW	AMOUNT";

	cout<<"\n\n\t04.	BALANCE	ENQUIRY";

	cout<<"\n\n\t05.	ALL	ACCOUNT	HOLDER	LIST";

	cout<<"\n\n\t06.	CLOSE	AN	ACCOUNT";

	cout<<"\n\n\t07.	MODIFY	AN	ACCOUNT";

	cout<<"\n\n\t08.	EXIT";

	cout<<"\n\n\tSelect	Your	Option	(1-8)	";
	cin>>ch;

	system("cls");

	switch(ch)

	{

	case	'1':

	write_acnt();
	break;

	case	'2':

	cout<<"\n\n\tEnter	The	account	No.	:	";	cin>>num;

	deposit_withdraw(num,	1);

	break;

	case	'3':

	cout<<"\n\n\tEnter	The	account	No.	:	";	cin>>num;
	deposit_withdraw(num,	2);

	break;

	case	'4':

	cout<<"\n\n\tEnter	The	account	No.	:	";	cin>>num;

	display_sp(num);

	break;
	case	'5':

	display_all();

	break;

	case	'6':

	cout<<"\n\n\tEnter	The	account	No.	:	";	cin>>num;

	delete_acnt(num);

	break;

	case	'7':
	cout<<"\n\n\tEnter	The	account	No.	:	";	cin>>num;

	modify_acnt(num);

	break;

	case	'8':

	cout<<"\n\n\tThanks	for	using	bank	managemnt	system";

	break;
	default	:cout<<"\a";

	}

	cin.ignore();

	cin.get();

	}while(ch!='8');

	return	0;

}
void	write_acnt()

{

	acnt	ac;

	ofstream	outFile;

	outFile.open("account.dat",ios::binary|ios::app);

	ac.create_acnt();
	outFile.write(reinterpret_cast<char	*>	(&ac),	sizeof(acnt));

	outFile.close();

}

void	display_sp(int	n)

{

	acnt	ac;

	bool	flag=false;

	ifstream	inFile;
	inFile.open("account.dat",ios::binary);

	if(!inFile)

	{

	cout<<"File	could	not	be	open	!!	Press	any	Key...";

	return;

	}
	cout<<"\nBALANCE	DETAILS\n";

	while(inFile.read(reinterpret_cast<char	*>	(&ac),	sizeof(acnt)))

	{

	if(ac.retacno()==n)

	{

	ac.show_acnt();

	flag=true;
	}

	}

	inFile.close();

	if(flag==false)

	cout<<"\n\nAccount	number	does	not	exist";

}
void	modify_acnt(int	n)

{

	bool	found=false;

	acnt	ac;

	fstream	File;

	File.open("account.dat",ios::binary|ios::in|ios::out);

	if(!File)

	{
	cout<<"File	could	not	be	open	!!	Press	any	Key...";

	return;

	}

	while(!File.eof()	&&	found==false)

	{

	File.read(reinterpret_cast<char	*>	(&ac),	sizeof(acnt));
	if(ac.retacno()==n)

	{

	ac.show_acnt();

	cout<<"\n\nEnter	The	New	Details	of	account"<<endl;

	ac.modify();

	int	pos=(-1)*static_cast<int>(sizeof(acnt));

	File.seekp(pos,ios::cur);
	File.write(reinterpret_cast<char	*>	(&ac),	sizeof(acnt));

	cout<<"\n\n\t	Record	Updated";

	found=true;

			}

	}

	File.close();
	if(found==false)

	cout<<"\n\n	Record	Not	Found	";

}

void	delete_acnt(int	n)

{

	acnt	ac;

	ifstream	inFile;

	ofstream	outFile;
	inFile.open("account.dat",ios::binary);

	if(!inFile)

	{

	cout<<"File	could	not	be	open	!!	Press	any	Key...";

	return;

	}
	outFile.open("Temp.dat",ios::binary);

	inFile.seekg(0,ios::beg);

	while(inFile.read(reinterpret_cast<char	*>	(&ac),	sizeof(acnt)))

	{

	if(ac.retacno()!=n)

	{

	outFile.write(reinterpret_cast<char	*>	(&ac),	sizeof(acnt));
	}

	}

	inFile.close();

	outFile.close();

	remove("account.dat");

	rename("Temp.dat","account.dat");
	cout<<"\n\n\tRecord	Deleted	..";

}

void	display_all()

{

	acnt	ac;

	ifstream	inFile;

	inFile.open("account.dat",ios::binary);

	if(!inFile)
	{

	cout<<"File	could	not	be	open	!!	Press	any	Key...";

	return;

	}

	cout<<"\n\n\t\tACCOUNT	HOLDER	LIST\n\n";

cout<<"==\n";
	cout<<"A/c	no.						NAME											Type		Balance\n";

cout<<"==\n";

	while(inFile.read(reinterpret_cast<char	*>	(&ac),	sizeof(acnt)))

	{

	ac.report();

	}

	inFile.close();
}

void	deposit_withdraw(int	n,	int	option)

{

	int	amt;

	bool	found=false;

	acnt	ac;
	fstream	File;

	File.open("account.dat",	ios::binary|ios::in|ios::out);

	if(!File)

	{

	cout<<"File	could	not	be	open	!!	Press	any	Key...";

	return;

	}

	while(!File.eof()	&&	found==false)
	{

	File.read(reinterpret_cast<char	*>	(&ac),	sizeof(acnt));

	if(ac.retacno()==n)

	{

	ac.show_acnt();

	if(option==1)
	{

	cout<<"\n\n\tTO	DEPOSITE	AMOUNT	";

	cout<<"\n\nEnter	The	amount	to	be	deposited";

	cin>>amt;

	ac.dep(amt);

	}

	if(option==2)
	{

	cout<<"\n\n\tTO	WITHDRAW	AMOUNT	";

	cout<<"\n\nEnter	The	amount	to	be	withdraw";

	cin>>amt;

	int	bal=ac.retdeposit()-amt;

	 if((bal<500	 &&	 ac.rettype()=='S')	 ||	 (bal<1000	 &&
ac.rettype()=='C'))

	cout<<"Insufficience	balance";

	else

	ac.draw(amt);

	}

	int	pos=(-1)*static_cast<int>(sizeof(ac));

	File.seekp(pos,ios::cur);

	File.write(reinterpret_cast<char	*>	(&ac),	sizeof(acnt));

	cout<<"\n\n\t	Record	Updated";
	found=true;

								}

}

	File.close();

	if(found==false)

	cout<<"\n\n	Record	Not	Found	";
}

void	intro()

{

	cout<<"\n\n\n\t		BANK";

	cout<<"\n\n\tMANAGEMENT";

	cout<<"\n\n\t		SYSTEM";

	cout<<"\n\n\n\nMADE	BY	:	Faheel	Nasir";
	cin.get();

}

4.6	Exercise	Sets

●	 	 	 		Write	a	menu	driven	C++	program	that	allows	user	to	enter	five	random
numbers	 and	 find	 their	 sum,	 average	 and	 smallest	 number	 among	 them.
(Use	switch	statement	to	determine	among	the	operators)

●	 	 	 	 	 Write	 a	 C++	 program	 that	 calculates	 the	 change	 due	 a	 customer	 by
denomination;	that	is	how	many	pennies,	dimes	etc	are	needed	in	change.

Chapter	5:	Concept	of	“Arrays”	in	C++

We	have	been	using	 standard	 data	 types	 so	 far,	 such	 as	 integer,	 floating	 point
number	and	character.	No	one	can	deny	their	importance	but	these	data	types	can
not	handle	 large	amount	of	data,	 they	can	only	handle	a	 limited	data.	To	 learn
how	we	can	handle	large	data	in	our	programs,	we	should	study	the	derived	data
types.	We	have	to	begin	with	array	structures.

With	the	introduction	of	arrays	we	can	begin	the	study	of	data	structures,	as	well.
In	this	chapter,	we	will	understand	some	of	the	basic	concepts	of	data	structures.
In	most	 cases,	 a	 collecting	mechanism	 is	 required	 to	 organize	 the	 data.	 In	 the
programming	 world,	 use	 of	 arrays	 is	 a	 common	 organizing	 technique	 from
which	we	can	process	data	as	an	individual	element	and	as	a	group	as	well.

Let’s	say,	we	have	a	problem	that	requires	us	to	read	process	and	then	print	the
data.	 Consider	 our	 data	 twents	 integers.	 We	 must	 also	 keep	 the	 integers	 in
memory	for	the	duration	of	the	program.	In	the	beginning	we	will	declare	twenty
variables,	 each	 variable	 with	 a	 different	 name.	 We	 know	 that	 having	 twenty
names	would	 create	 a	 problem.	 So,	 the	 point	 is	 how	 can	we	 create	 and	 store
twenty	 integers	 from	 the	 keyboard.	 For	 printing	 those	 twenty	 integers	we	will
need	twenty	references	to	store	them	and	twenty	more	references	to	print	them.

This	approach	may	be	acceptable	to	twenty	or	twenty	five	or	twenty	six	integers
but	this	is	not	acceptable	for	a	larger	data,	i.e.	let’s	say	200	or	2,000	or	20,000
integers.	So,	 to	process	 large	 amount	of	 data	we	need	 a	powerful	 structure.	 In
this	 case	we	 commonly	 use	 arrays.	 In	C++,	 array	 is	 a	 fixed	 size	 collection	 of
elements	of	the	same	data	type.

5.1	Using	Arrays	in	C++

In	this	section,	we	will	learn	how	to	declare	and	define	arrays,	in	C++,	and	after
that	we	will	look	at	several	typical	applications	of	arrays	including	reading	and
writing	values	in	arrays.

●							Declaration	and	Definition

In	C++	an	array	must	be	 first	declared	and	 then	defined	before	 it	can	be	used.
Declaration	and	Definition	tell	 the	compiler,	 the	name	of	the	array,	types	of	its
elements	and	the	number	of	elements	in	the	array.	We	have	to	remember	that	the
size	of	the	array	is	a	constant	and	must	have	a	value.

●							Accessing	Elements	in	Arrays

In	C++,	we	use	an	index	to	access	individual	elements	in	an	array.	For	that,	the
index	must	 be	 an	 integral	 value	 of	 an	 expression	 that	 evaluates	 to	 an	 integral
value.	The	simplest	form	of	accessing	and	element	is	a	numeric	constant.

n	[0]

Usually,	 the	 index	 is	 a	 variable.	 So,	 process	 all	 the	 elements	 in	 “n”,	 a	 loop
similar	to	the	following	code	will	be	used

for	(i	=	0	;	i	<	9	;	i++)

n[i]

●							Storing	Values	in	Arrays

In	C++,	declaration	and	definition	only	reserve	space	for	elements	in	the	array.
There	will	be	no	value	that	will	be	stored.	If	we	want	to	store	any	value	in	the
array,	we	must	 first	 initialize	 the	 elements,	 then	 read	value	 from	 the	keyboard
are	then	assign	values	to	each	individual	element	in	the	array.

●							Inputting	Values

In	 C++,	 another	 way	 to	 fill	 and	 use	 an	 array	 is	 to	 read	 the	 values	 from	 the
keyboard	or	 a	 file.	This	method	of	 inputting	values	 can	be	done	using	 a	 loop.
When	the	array	is	going	to	be	completely	filled,	the	most	appropriate	loop	to	use,
is	for	 loop.	In	for	 loop,	 the	number	of	elements	 is	fixed	and	known.	A	general
for	loop	to	fill	an	array	is	shown	below

for	(j	=	0	;	j	<	9	;	j++)

Cin	>>	n[j]

●							Assigning	Values

In	 C++,	 individual	 elements	 can	 be	 assigned	 values	 using	 the	 assignment
operators.	Any	value	that	can	be	reduced	to	the	proper	data	type	can	be	assigned
to	 an	 individual	 array	 element.	 The	 simple	 assignment	 statement’s	 syntax	 is
shown	below

n[4]	=	69;

We	have	to	remember	that	we	cannot	assign	one	array	to	another	array,	even	if
they	match	fully	 in	size	or	 in	 type.	We	have	 to	copy	an	array	at	 the	 individual
level.	 For	 example,	 to	 copy	 an	 array	 of	 twenty	 integers	 to	 a	 second	 array	 of
twenty	integers	we	could	use	the	following	syntax.

for	(n	=	0	;	n	<	20	;	n++)

Second	[n]	=	First	[n]

●							Exchanging	Values

In	C++,	 it	 is	 a	 common	practice	 to	 exchange	 the	contents	of	 two	elements	we
call	as	sorting	an	array.	Simply,	when	we	exchange	the	variables,	we	swap	the
values	of	elements	without	knowing	what	is	in	them.

●							Putting	Value

In	C++,	a	very	common	application	of	arrays	is	to	print	its	own	contents.	This	is
easily	done	with	the	“for	loop”.	For	example

for	(i	=	0	;	i	<	9	;	i++)

cout	<<	n	[i];

cout	<<	endl;
In	the	above	mentioned	example,	all	the	data	would	be	printed	in	one	line	after
the	compiler	compiles	the	code.

For	example,	if	we	have	to	insert	and	print	array	element,	we’ll	use	the	code

int	alpha[5]	=	{19,	10,	8,	17,	9}

//	change	4th	element	to	9

alpha[3]	=	9;

//	take	input	from	the	user	and	insert	in	third	element
cin	>>	alpha[2];

//	take	input	from	the	user	and	insert	in	(i+1)th	element

cin	>>	alpha[i];

//	print	first	element	of	the	array

cout	<<	alpha[0];

//	print	ith	element	of	the	array

cout	>>	alpha[i-1];

Example	Program	(To	understand	arrays)

Problem	:

Write	a	C++	program	using	arrays,	to	read	five	integers	from	the	user	and	print
their	sum.

Solution	:
#include	<iostream>

using	namespace	std;

int	main()

{

int	n[5],	sum	=	0;

cout	<<	"Enter	5	numbers:	";			
//		5	numbers	are	entered	by	user	in	an	array

//		To	find	the	sum	of	user's	entered	numbers

for	(int	i	=	0;	i	<	5;	++i)

{

cin	>>	n[i];

sum	+=	n[i];

}
cout	<<	"Sum	=	"	<<	sum	<<	endl;

return	0;

}

5.2	Arrays	and	Functions

Processing	 arrays	 in	 a	 larger	 program	 requires	 you	 to	 be	 able	 to	 pass	 them	 to
functions.	We	may	do	it	by	passing	the	whole	array	to	a	function	or	by	passing
an	individual	element.

●							Passing	Individual	Element

In	 C++,	 any	 individual	 element	 can	 be	 passed	 to	 a	 function	 like	 every	 other
ordinary	variable.	Elements	of	an	array	can	be	passed	through	a	function	as	long
as	its	parameter	type	matches	the	function’s	parameter	type.

Let’s	 say	 we	 have	 a	 function,	 named	 as	 print_squareroot,	 which	 receives	 an
integer	and	prints	its	square	root	on	the	console	screen.	Using	array,	we	can	loop
array’s	elements	to	pass	through	our	function,	one	by	one.

●							Passing	the	Whole	Array

In	C++,	if	we	want	our	desired	function	to	apply	on	the	whole	array,	we	have	to
pass	the	whole	array	through	function.	It	would	be	less	efficient	as	it	would	take
more	time	and	a	lot	of	memory.

We	have	to	remember	that	the	name	of	an	array	is	a	primary	expression,	whose
value	is	determined	by	the	first	element	of	our	array.	We	have	to	remember	these
two	rules,	whenever	we	are	passing	the	whole	array	to	a	function.

●					We	have	to	call	the	function	just	by	passing	the	name	of	the	array.

●	 	 	 	 	 In	 our	 function’s	 definition,	 the	 formal	 parameter	must	 have	 the
type,	array.	In	this	case,	we	don't	need	to	specify	our	array’s	size.

5.3	Array	Applications

In	general,	C++	provides	us	with	two	statistical	applications	of	arrays,	i.e.

●						Frequency	Distribution	Arrays

●						Histograms

●							Frequency	Distribution	Arrays

In	 C++,	 frequency	 array	 shows	 the	 number	 of	 elements	 with	 identical	 values
found	in	a	series	or	array	of	numbers.	For	example,	 if	we	have	taken	a	sample
data	 of	 fifty	 values	 between	 0	 and	 17	 and	 we	 want	 to	 figure	 out	 how	 many
values	are	1,	how	many	are	7	and	how	many	among	them	are	8.

We	have	to	read	these	values,	using	an	array	called	alpha.	We	then	will	create	an
array	of	fifteen	elements,	which	will	show	the	repetition	of	each	number	in	the
series.

To	better	understand	this	application,	we	have	to	review	the	following	code.

#include<iostream>

using	namespace	std;

int	frequency(int	alpha[],	int	n,	int	m)
{

int	count	=	0;

for	(int	i=0;	i	<	n;	i++)

if	(alpha[i]	==	m)

count++;

return	count;
}

//	Driver	program

int	main()	{

int	alpha[]	=	{0,	5,	5,	5,	4}	;

int	m	=	5;

int	n	=	sizeof(alpha)/sizeof(alpha[0]);

cout	<<	frequency(alpha,	n,	m);
return	0;

}

●							Histograms

In	 C++,	 histograms	 are	 the	 pictorial	 definition	 of	 frequency	 arrays.	 Using
histogram,	we	may	print	a	bar	chart	instead	of	printing	the	values	of	elements.

We	may	understand	the	concepts	of	histogram,	by	going	through	the	following
program

#include<iostream>

#include<conio.h>

#include<iomanip>

using	namespace	std;
int	findmaximum(int	alpha[],int	n)

{

int	maximum=alpha[0];

for(int	i=0;i<n;i++)

if(maximum<alpha[i])	maximum=alpha[i];

return	maximum;
}

int	main()

{

int	n,fsize;

cout<<"Enter	Total	number	of	data	points:";

cin>>n	;

int	alpha[n];
for(int	i=0;i<n;i++){

cout<<"Value"<<i+1<<":";

cin>>alpha[i];	//	Initializing	the	data

}

int	m=findmaximum(alpha,n);	//	Finding	maximum	value	of	the	data	points

if(m>n)	fsize=m+1;

else	fsize=n;

int	freq[fsize];

/*
->	Declaring	frequency	array	with	an	appropriate	size

->	The	size	of	frequency	array	can	be	the	size	of	the	alpha	array

->	The	maximum	value	of	the	alpha	array	items	plus	1*/

for(int	i=0;i<fsize;i++)	//initializing	frequency	array

freq[i]=0;

//computing	frequencies
for(int	i=0;i<n;i++)

freq[alpha[i]]++;

//printing	histogram

cout<<"\n....Histogram....\n\n";

for(int	i=0;i<fsize;i++){

cout<<left;

cout<<setw(5)<<i;
cout<<setw(5)<<freq[i];

for(int	j=1;j<=freq[i];j++)	cout<<"*";

cout<<"\n";

}

system("PAUSE");

return	0;
}

5.4	Sorting

In	 the	world	of	programming,	one	of	 the	most	common	applications	 is	sorting.

Sorting	is	a	technique,	in	which	data	is	arranged	according	to	its	values.	In	C++,
usually	we	use	three	types	of	sorting.

●						Selection	Sort

●						Insertion	Sort

●						Bubble	Sort

●							Selection	Sort

Selection	 sort	 is	 a	 technique	 for	 arranging	 the	 data,	 in	 which	 data	 is	 further
divided	 into	sub	data,	 i.e.	 sorted	data	and	unsorted	data.	System	divides	sorted
and	unsorted	data	with	an	 imaginary	wall.	Everytime,	when	ever	system	move
an	 element	 from	 unsorted	 data	 to	 sorted	 data,	 we	 can	 say,	 the	 system	 have
completed	a	 sort	pass.	For	 further	understanding	of	 the	 selection	 sort,	we	may
review	this	code,	that	prints	entered	numbers	in	ascending	order

#include<iostream>

#include<conio.h>

#include<bits/stdc++.h>

using	namespace	std;

int	minimum(int	alpha[],int	n,	int	m,	int	beta)
{

beta=m;

int	min=alpha[m];

for(int	i=m;i<n;i++)

{

if(alpha[i]<min)
{

min=alpha[i];

beta=i;

}

}

return	beta;

}

int	selection(int	alpha[],int	n)

{
int	beta=-1,m;

for(m=0;m<n-1;m++)

{

int	beta1=minimum(alpha,n,m,beta);

int	temp=alpha[m];

alpha[m]=alpha[beta1];
alpha[beta1]=temp;

}

cout<<"The	sorted	list	is:\n";

for(m=0;m<n;m++)

cout<<alpha[m]<<"	";

}

int	main()
{

int	n;

cout<<"Enter	the	size	of	the	array:	";

cin>>n	;

int	alpha[n],i;

cout<<"Enter	the	array	values:\n";
for(i=0;i<n;i++)

{

cin>>alpha[i];

}

//calling	selection	function

selection(alpha,n);

return	0;

}

●							Insertion	Sort

This	 sorting	 technique	 is	 usually	 used	 by	 card	 players	 to	 sort	 cards	 in	 their
hands,	maintaining	a	particular	sequence.In	 insertion	sort,	an	element	 is	picked
py	 by	 the	 compiler	 from	unsorted	 data,	 and	 inserted	 in	 it’s	 particular	 place	 in
sorted	data.	For	further	explanation,	we	may	go	through	this	code

#include<iostream>

using	namespace	std;

int	main()

{

int	o,m,n,beta,alpha[30];	//,	j	=	m	,	n	=	n	,	a	=	alpha
cout<<"Enter	the	total	number	of	elements:";

cin>>n;

cout<<"\nEnter	the	elements\n";

for(o=0;o<n;o++)

{

cin>>alpha[o];
}

for(o=1;o<=n-1;o++)

{

beta=alpha[o];

m=o-1;

while((beta<alpha[m])&&(m>=0))
{

alpha[m+1]=alpha[m];		//moves	element	forward

m=m-1;

}

alpha[m+1]=beta;		//insert	element	in	proper	place
}

cout<<"\nSorted	list	is	as	follows\n";

for(o=0;o<n;o++)

{

cout<<alpha[o]<<"	";

}
return	0;

}

●							Bubble	Sort

In	this	sorting,	we	have	divided	the	list	 into	two	sublists,	 i.e.	sorted	sublist	and
unsorted	sublist.	The	smallest	element	of	the	data	is	moved	to	sorted	sublist	and
bubbled	 from	 the	 unsorted	 sublist.	 The	 process	 continues	 with	 the	 smallest
elements	in	our	unsorted	sublist.	For	example

#include<iostream>

using	namespace	std;

int	main()
{

	int	alpha[50],n,m,o,beta;

	cout<<"Enter	the	total	number	of	elements:	";

	cin>>n;

	cout<<"Enter	the	elements:	";

	for(m=0;m<n;m++)
	cin>>alpha[m];

	for(m=1;m<n;m++)

	{

	for(o=0;o<(n-m);o++)

	if(alpha[o]>alpha[o+1])
	{

	beta=alpha[o];

	alpha[o]=alpha[o+1];

	alpha[o+1]=beta;

	}

	}
	cout<<"Array	after	bubble	sort:";

	for(m=0;m<n;m++)

	cout<<"	"<<alpha[m];

	return	0;

}

5.5	Programming	Examples

Problem	-	1

Write	a	C++	program	that	reads	elements	of	a	matrix	from	the	user	and	print	it
on	output.

Solution	:

#include	<iostream>

#include	<conio.h>

using	namespace	std;

int	main()
{

int	alpha[10][10],beta,charlie,n,m;

cout<<"Enter	size	of	row	and	column:	";

cin>>beta>>charlie;

cout<<"Enter	elements	of	matrices(row	wise)"<<endl;

for(n=0;n<beta;n++)
for(m=0;m<charlie;m++)

cin>>alpha[n][m];

cout<<"Displaying	matrix"<<endl;

for(n=0;n<beta;n++)

{

for(m=0;m<charlie;m++)

cout<<alpha[n][m]<<"		";
cout<<endl;

}

getch();

return	0;

}

Problem	-	2

Write	a	C++	program	to	add	two	matrices,	using	multidimensional	arrays.

Solution	:
#include	<iostream>

using	namespace	std;

int	main()

{

int	r,	c,	alpha[100][100],	beta[100][100],	sum[100][100],	i,	j;

cout	<<	"Enter	number	of	rows	(between	1	and	100):	";

cin	>>	r;
cout	<<	"Enter	number	of	columns	(between	1	and	100):	";

cin	>>	c;

cout	<<	endl	<<	"Enter	elements	of	1st	matrix:	"	<<	endl;

for(i	=	0;	i	<	r;	++i)

for(j	=	0;	j	<	c;	++j)

{
cout	<<	"Enter	element	a"	<<	i	+	1	<<	j	+	1	<<	"	:	";

cin	>>	alpha[i][j];

}

cout	<<	endl	<<	"Enter	elements	of	2nd	matrix:	"	<<	endl;

for(i	=	0;	i	<	r;	++i)

for(j	=	0;	j	<	c;	++j)
{

cout	<<	"Enter	element	b"	<<	i	+	1	<<	j	+	1	<<	"	:	";

cin	>>	beta[i][j];

}

for(i	=	0;	i	<	r;	++i)

for(j	=	0;	j	<	c;	++j)

sum[i][j]	=	alpha[i][j]	+	beta[i][j];				
cout	<<	endl	<<	"Sum	of	two	matrix	is:	"	<<	endl;

for(i	=	0;	i	<	r;	++i)

for(j	=	0;	j	<	c;	++j)

{

cout	<<	sum[i][j]	<<	"		";

if(j	==	c	-	1)
cout	<<	endl;

}

return	0;

}

5.6	Exercise	Sets

●	 	 	 	 	Write	a	C++	program	that	copies	a	one	dimensional	array	of	x	elements
into	 a	 two	 dimensional	 array	 of	 n	 rows	 and	 m	 columns.	 You	 have	 to
remember	that	the	rows	and	columns	must	be	valid	factors	of	the	number
of	elements	of	the	one	dimensional	array,	i.e.	x	=	n	*	m	.

●	 	 	 		Write	a	C++	program	to	modify	the	selection	sort	to	count	the	number	of
exchange,	needed	to	sort	the	unsorted	data.

Chapter	6:	Concept	of	“Pointers”	in	C++

We	know	that	every	computer	have	some	addressable	memory	locations.	In	the
past	chapters,	we	first	assigned	identifiers	to	our	data	and	then	manipulated	data
using	the	same	identifiers.

To	overcome	this,	we	may	use	our	data	to	address	directly,	but	that	would	mean
giving	up	 the	ease	of	 symbolic	names.	So,	C++	provides	you	 the	capability	 to
work	with	addresses	symbolically.	We	can	do	it	using	pointers.
Pointers	 have	 many	 uses	 in	 C++,	 they	 provides	 you	 a	 very	 efficient	 way	 for
accessing	data.	Furthermore,	pointers	are	helpful	in	manipulating	data	in	arrays.
Pointers	 are	 the	 basis	 for	 dynamic	 allocation	 of	 memory	 so	 they	 are	 used	 in
functions	as	reference	parameters.

6.1	Pointers

In	 C++,	 pointer	 is	 not	 a	 basic	 data	 type.	 We	 may	 call	 that	 pointer	 type	 is	 a
derived	data	type.	We	have	to	keep	in	mind	that	a	pointer’s	value	can	be	stored
anywhere	 on	 available	 storage	 on	 your	machine.	 For	 understanding	 and	 using
pointers	in	C++,	we	have	to	understand	the	basic	concepts	of	pointers.

●							Pointer	Constants

We	have	 read	 the	 concept	 of	 character	 constants	 in	 chapter	 one.	So,	we	know
that	any	character	can	have	a	value	and	can	be	stored	in	our	desired	variable.	We
are	familiar	with	this	concept	that	the	character	constant	doesn’t	have	a	name	but
the	variable	has	to	be	declared	in	our	code,	with	a	name.

As	compared	to	character	constant,	value	of	pointer	constant	cannot	be	changed.
We	 have	 to	 keep	 in	mind	 that	we	 can	 only	 use	 pointer	 constants,	 as	 they	 are
drawn	 from	 the	 set	 of	 addresses	 from	 a	 machine.	 Pointer	 constants	 exist	 by
themselves.
We	know	that	addresses	in	a	machine	or	computer	cannot	be	changed,	we	should
remember	that	the	variables	would	change	from	one	execution	of	our	program	to
another.

In	 modern	 operationg	 systems,	 when	 the	 program	 is	 started,	 OS	 puts	 it	 in	 a

memory	 wherever	 it	 is	 allocated.	 So,	 next	 time,	 when	 we	 will	 start	 the	 same
program,	it	will	be	allocated	in	a	different	space.

●							Pointer	Values

Defining	a	pointer	constant	as	an	address,	in	memory,	we	can	turn	our	attention
to	saving	the	address.	If	we	have	a	pointer	constant,	we	may	be	able	to	save	its
value,	if	we	can	identify	it	somehow.

The	 address	 operator	 i.e.	 and	 operator	 (&)	 provides	 a	 pointer	 constant	 to	 a
specific	named	location	in	a	memory.
Everytime,	we	 are	 in	 need	 of	 a	 pointer	 value,	 all	we	 have	 to	 do	 is	 to	 use	 the
operator	that	specifies	address.	For	example

#include	<iostream>

using	namespace	std;

int	main	()

{

int		n;

char	m[30];
cout	<<	"Allocated	address	of	variable	'n':	";

cout	<<	&n	<<	endl;

cout	<<	"Allocated	address	of	variable	'm':	";

cout	<<	&m	<<	endl;

return	0;

}
With	 this	 code,	 we	 may	 understand	 how	 it	 works.	 By	 compiling	 this	 code,
everytime	 the	 allocated	 memory	 will	 be	 different	 but	 as	 we	 know	 that	 the
variables	will	remain	the	same.

Moving	 forward,	 whenever	 and	 operator	 is	 used	 as	 a	 prefix	 of	 a	 variable,	 it
defines	the	address	of	variable	and	when	it	is	used	as	a	suffix	it	means	reference
parameter.	Secondly,	it	is	to	be	stated	that	a	variable’s	address	is	the	address	of
the	first	byte	occupied	by	the	variable.

●							Pointer	Variables

We	 know	 that	 we	 have	 pointer	 values	 and	 pointer	 constants,	 we	 should
remember	 that	we	 can	have	pointer	 variables	 as	well.	Because	of	 this,	we	 can
store	the	address	of	a	specific	variable	to	another	variable.	This	is	called	pointer
variable.

For	this,	first	of	all,	we	should	distinguish	between	a	variable	and	its	value.	As
variable’s	location	and	name	are	constants,	the	variable’s	value	can	change	when
the	 program	 executes.	We	 can	 even	 store	 the	 address	 of	 a	 variable	 in	 two	 or
more	than	two	different	pointer	variables.

Moving	 forward,	 if	we	consider	a	pointer	value	and	we	do	not	want	 it	 to	be	a
pointer	value	anymore,	what	should	we	do!	In	C++,	a	programmer	can	use	a	null
constant.	This	constant	is	represented	as	NULL	and	by	using	this,	we	can	set	a
pointer	 to	point	 towards	nothing.	 In	other	words,	we	should	use	 this	when	our
pointer	doesn’t	contain	an	address.

6.2	Accessing	Variables	through	pointers

Consider	that	we	have	a	variable	and	we	have	a	pointer	as	well,	pointing	to	that
variable.	 The	 question	 is,	 how	 we	 would	 use	 that	 pointer	 to	 relate	 it	 to	 our
variable!

In	 this	 scenario,	 C++	 has	 another	 operator.	 This	 is	 known	 as	 indirection
operators	and	represented	as	“*”.

Indirection	 operator	 is	 a	 unary	 operator	 and	 its	 operand	 should	 be	 a	 pointer
value.	Everytime,	its	result	would	be	an	expression,	which	we	can	use	to	access
the	pointer	value	for	alteration	and	inspection.

For	example,	if	we	have	to	add	1	to	the	variable	“n”,	we	will	do	this	with	one	of
these	statements,	assuming	that	pointer	“m”	was	correctly	initialized,	i.e.	(m	=
&n)

●						n++;

●						n	=	n	+	1;

●						*m	=	*m	+	1

●						(*m)++;

We	have	to	keep	in	mind	that	in	the	last	statement,	i.e.	(*p)++,	parentheses	are
necessary.

6.3	Pointer	Declaration

We	 know	 that	 we	 use	 indirection	 operator	 to	 declare	 and	 define	 the	 pointer
variables.	 Indirection	 operator	 is	 not	 a	 primary	 operator	 but	 it's	 a	 compiler
syntactical	notation.	To	make	it	easier	to	remember,	we	should	make	it	the	same
token	as	the	operator.	For	example

#include	<iostream>

#include	<bits/stdc++.h>

using	namespace	std;

void	n()

{

int	variable	=	69;							
//	Declaring	our	pointer	variable				

int	*pointer;

//	The	data	type	of	pointer	and	variable	must	be	the	same

pointer	=	&variable;				

//	Assigning	the	addresses	of	a	variable	to	its	pointe	r

cout	<<	"Value	at	variable	=	"	<<	variable	<<	endl;
cout	<<	"Value	at	*pointer	=	"	<<	*pointer	<<	endl;

cout	<<	"Value	at	pointer	=	"	<<	pointer	<<	endl;

}

//	Our	driver	program

int	main()

{

n();
}

6.4	Initialization	of	a	Pointer	Variable

In	general,	C++	does	not	initialize	variables.	So,	whenever	we	start	our	program,
all	the	variables	have	some	random	values	in	them.	The	very	same	thing	happens
in	the	case	of	pointers.	Whenever	a	program	is	started,	every	pointer	have	some
random	 memory	 addresses	 in	 them.	 In	 other	 words,	 we	 can	 say	 that	 every
pointer	 have	 some	 values	 to	 allocate	 itself	 in	memory.	We	will	 get	 a	 runtime
error,	if	the	address	is	not	properly	allocated,	in	many	cases,	it	is	because	of	bad
programming	skills.

We	have	to	remember	that	we	can	initialize	the	pointers	only	when	the	pointers
are	properly	declared	and	defined.	If	we	do	not	define	them	properly,	we	would
not	 be	 able	 to	 initialize	 them.	 For	 example,	 if	 we	 have	 a	 variable	 “n”	 and	 a
pointer	 “m”,	we	will	 set	 “m”	 to	 point	 towards	 “n”	 at	 the	 time	 of	 declaration,
otherwise,	the	code	would	not	work.	For	example

As	we	can	see,	 initialization	have	two	different	steps.	Firstly,	we	can	declare	a
variable.	Secondly,	we	can	use	an	assignment	statement	to	initialize	it.	We	can
understand	this	concept	with	the	following	example

Problem-1

Change	the	value	of	variables	in	a	C++	code,	using	pointers.

Solution	:

#include	<iostream>			

using	namespace	std;
int	variableN	=	4000;

int	variableM	=	5000;

void	reference(int	**n,	int	**m)

{

*n	=	&variableN;

*m	=	&variableM;
}

void	numberOutput()

{

cout	<<	"N	=	"	<<	variableN	<<	endl;

cout	<<	"M	=	"	<<	variableM	<<	endl;

}

int	main()
{

int	*testN	=	0;

int	*testM	=	0;

reference(&testN,	&testM);

*testN	=	69;

*testM	=	96;
numberOutput();

return	0;

}

Problem-2

Write	a	C++	code	using	the	concept	of	pointers,	to	add	two	integers

Solution	:

#include	<iostream>

using	namespace	std;

int	main()

{
//	Initializing	Variables	and	Pointers

	int	*variableN=new	int;

	int	*variableM=new	int;

	int	*sum=new	int;

	//	Reading	Numbers	from	the	user

	cout<<"Enter	first	number:	";
	cin>>(*variableN);

	cout<<"Enter	second	number:	";

	cin>>(*variableM);

	//	Calculating	the	Sum

	*sum=*variableN+*variableM;

	//	Printing	the	Sum

	cout<<"Addition	is:	"<<*sum<<endl;
	//	Returning	Value

	return	0;

}

6.5	Pointers	and	Functions

Most	effectively,	we	can	use	pointers	in	a	function.	We	already	know	that	C++
provides	two	possibilities	to	pass	parameters	through	a	function,	i.e.

●						Pass	by	Value
●						Pass	by	Reference

We	 have	 now	 studied	 the	 concept	 of	 pointers,	 so,	 we	 can	 use	 an	 alternative
method	to	pass	by	reference.	It	is	simple	as	we	just	have	to	pass	a	pointer	and	we
may	use	 it	 to	 change	 the	value	of	variable.The	only	difference	 among	 them	 is
that	when	we	do	it	by	passing	a	pointer,	an	alias	is	not	created.	We	should	keep
in	mind	that	we	have	to	use	the	difference	operator	to	effect	its	change.

●							Pointers	as	Formal	Parameters

#include	<iostream>

using	namespace	std;

//	Function	prototypes

void	swap(int&,	int&);
int	main()

{

int	n	=	69,	m	=	96;

cout	<<	"Before	swapping"	<<	endl;

cout	<<	"n	=	"	<<	n	<<	endl;

cout	<<	"m	=	"	<<	m	<<	endl;
swap(n,	m);

cout	<<	"\nAfter	swapping"	<<	endl;

cout	<<	"n	=	"	<<	n	<<	endl;

cout	<<	"m	=	"	<<	m	<<	endl	;

return	0;

}

void	swap(int&	a1,	int&	a2)

{

int	alpha;

alpha	=	a1;
a1	=	a2;

a2	=	alpha;

}

This	 code	was	 an	 example	 of	 exchange	 function.	 In	 this	 example,	 we	 call	 an
exchange	function,	and	we	pass	two	variables	whose	values	are	to	be	exchanged.

●							Functions	Return	Pointers

In	C++,	nothing	can	stop	a	function	from	returning	a	pointer	to	its	own	calling
function,	In	fact,	it's	a	common	activity	for	the	functions	to	return	pointers.

We	can	understand	this	phenomenon	by	using	the	following	code
#include	<iostream>

using	namespace	std;		

//	Initializing	a	Function	having	Pointer	as	Return	type,

int*	alphaf(int);		

int	main()

{
int	n	=	236;

//	Displaying	the	value	of	variable	n

cout	<<	n	<<	endl;

//	Calling	our	concerned	function

cout	<<	*alphaf(n)	<<	endl;

}
//	Defining	our	function

int*	alphaf(int	n1)

{

//	Taking	a	Local	Variable	Inside	our	Function

int	lv	=	n1	*	n1;

//	 This	 statement	will	 print	 a	warning	 as	we	 are	 returning	 the	 address	 of	 a
local	variable

return	&lv;

}

6.6	Arrays	and	Pointers

In	 the	 concept	 of	 pointers,	we	 should	 know	 that	 there	 is	 a	 very	 close	 relation
between	arrays	and	pointers.	We	should	keep	in	mind	that	the	name	of	an	array
is	 always	 a	 pointer	 constant,pointing	 to	 the	 first	 element	 of	 that	 array.	 Now,
because	the	array’s	name	is	the	pointer	constant,	its	value	can	not	be	changed.

Moving	forward,	the	name	of	the	array	and	the	address	of	the	first	element	is	a
pointer	constant	 to	 the	first	element,	both	represent	 the	same	location	allocated
in	memory.	Because	of	this,	we	can	use	the	array’s	name,	wherever,	we	need	to
use	a	pointer.	The	only	restriction	is	that	we	can	not	use	it	specifically	with	the
indirect	 operator.	 The	 point	 to	 remember	 here	 	 is	 that	 the	 name	 of	 array	 is	 a
pointer,	only	pointing	to	the	first	element,	not	to	the	whole	array.	To	understand
this,	we	may	take	a	look	at	this	code
{

//Array	name	is	a	Pointer	Constant

Int	n	[69]	;

cout	<<	“Allocated	Address	of	n	[0]	:	”<<	&n[0]	<<	endl;

cout	<<	“Arrays	name	as	a	Pointer	:	”<<	n	<<	endl;

}
As	we	 can	 see,	 to	 access	 an	 entire	 array,	 a	 pointer	 to	 its	 first	 element	may	be
used	instead	of	using	the	name	of	that	array.	For	further	understanding,	we	may
read	the	following	code

#include	<iostream>

using	namespace	std;

const	int	ALPHA	=	3;

int	main	()	{

int		array[ALPHA]	=	{69,	96,	696};
for	(int	n	=	0;	n	<	ALPHA;	n++)

{

cout	<<	"Value	of	array["	<<	n	<<	"]	=	";

cout	<<	array[n]	<<	endl;

}

return	0;
}

6.7	Programming	Examples

Problem	-	1

Write	 a	 C++	 program	 to	 sort	 an	 array	 (selection	 sort),	 using	 the	 concept	 of
pointers.
Solution	:

#include	<iostream>

using	namespace	std;

void	swap(int	*n,	int	*m)

{

int	alpha	;
alpha	=	*n;

*n	=	*m;

*m	=	alpha;						

}

void	sort(int	*data,	int	size)

{

int	beta;

for(beta	=	0;	beta	<	size	-	1;	beta++)
{

int	charlie;

for(charlie	=	beta	+	1;	charlie	<	size;	charlie++)

if(data[beta]	>	data[charlie])

swap(&data[beta],	&data[charlie]);

}
}

const	int	max_int	=	10;

int	main()

{

int	integers[max_int];

int	o;					

cout	<<	"Entaer	ten	integers	you	want	to	sort	:"	<<endl;
for(o	=	0;	o	<	max_int	&&	cin	>>	integers[o];	o++);

int	num	=	o;

sort(integers,	num);

cout	<<	"Your	Sorted	data	is"	<<endl;

cout	<<	"==================="	<<	endl;

for(int	o	=	0;	o	<	num;	o++)
cout	<<	integers[o]	<<	endl	;

cout	<<	"==================="	<<	endl;

}

Problem	-	2

Write	 a	 C++	 program	 to	 sort	 an	 array	 (bubble	 sort),	 using	 the	 concept	 of
pointers.

Solution	:

#include	<iostream>

using	namespace	std;

void	bubble(int*,int);

int	main()
{

int	array[5],size=5,*point;

for(int	num=0;	num	<	size;	num++)

{

cout	<<	"Enter	integer	"	<<	num+1	<<	"	:	";

cin>>array[num];
}

point=array;

bubble(point,size);

}

void	bubble(int	*point,int	size)

{

int	co1,co2,swap;
for(co1=0;co1<size-1;co1++)

{

for(co2=0;co2<size-co1-1;co2++)

{

if(*(point+co2)>*(point+co2+1))

{

swap=*(point+co2)	;

(point+co2)=(point+co2+1);

*(point+co2+1)=swap;		

}
}

}

for(co1=0;co1<size;co1++)

{

cout<<*(point+co1)<<"	,	";

}
};

6.8	Exercise	Sets

●					Write	a	C++	program	to	sort	an	array	(insertion	sort),	using	the	concept	of
pointers.

●	 	 	 	 	Write	a	function’s	prototype	statement,	for	a	function	named	as	“alpha”,
that	should	return	void	type	and	should	have	a	reference	parameter	 to	an
integer	 “n”.	 Furthermore,	 it	 should	 have	 a	 pointer	 parameter	 to	 the
allocated	address	of	a	long	double	“m”.

Chapter	7:	Concept	of	“Classes”	in	C++

We	are	using	the	word	“C++”	from	the	beginning	of	this	book.	We	all	know	that
C++	is	a	computer	programming	language.	Furthermore,	we	know	that	the	C	in
C++	stands	for	its	 incestor,	programming	language	C,	but	what	does	++	stands
for!	 This	 is	 the	 question.	Answer	 is,	 the	 pluses	 (++)	 designate	 the	 concept	 of
classes	in	C++.

Class	is	a	combination	of	some	groups	of	data	and	functions	which	are	combined
to	form	a	type.	However,	these	classes	prove	to	be	more	than	just	types	because
they	provide	a	programmer	with	the	capability	to	develop	high-quality	software.
In	 this	 chapter,	we	will	 study	 the	basic	 concepts	of	 classes.	Furthermore,	 after
studying	the	basic	principles	of	classes,	we	will	get	to	know	about	defining	the
class	object,	constructors	and	destructors.

7.1	Classes

We	have	studied	the	concept	of	types	in	chapter	one.	Type	is	a	set	of	operations
or	 values	 that	 can	 be	 applied	 to	 another	 value.	 In	 programming,	 we	 have
declared	derived	types	but	we	have	not	been	able	 to	define	any	operations	 that
are	 unique	 to	 the	 type.	 Classes	 allow	 us	 to	 define	 a	 type	 and	 to	 define	 the
operations	that	are	necessary	to	manipulate	it	as	well.	Basically,	 the	concept	of
classes	is	the	one	to	give	C++	its	uniqueness	and	strength.

For	example,	he	should	consider	a	class,	named	as	“Alpha”.	Within	“Fraction”,
there	is	some	data,	especially	an	integer	called	“numberN”and	an	integer	called
“numberM”.	We	can	also	add	addition,	subtraction,	multiplication	or	division	in
our	class	as	well.	We	can	define	these	operations	using	functions,	these	functions
are	known	as	methods	when	we	define	them	in	a	class.

When	 we	 combine	 data	 and	 operations	 into	 an	 object,	 we	 use	 a	 very	 basic
principle	of	data	programming,	i.e.	data	hiding.	Data	hiding	is	important	because
whenever	we	create	a	data	type,	we	need	to	make	sure	that	it	is	protected	from
any	external	threat	that	may	destroy	the	integrity	of	our	data.

●							Access	Specifiers

In	 C++,	 we	 have	 three	 types	 of	 access	 specifiers	 that	 can	 be	 used	 with	 class

member	data	or	member	functions.	We	will	be	discussing	the	first	two	types	of
access	specifiers,	i.e.	private	access	specifiers	and	public	access	specifiers.

●						Private	Access	Specifiers

Whenever	a	data	is	declared	private,	it	can	be	accessed	only	by	the	functions	that
exist	within	the	class;	it	can	not	be	accessed	by	any	non	class	function	that	exist
in	the	program.	We	just	studied	about	the	concept	of	data	hiding.	Data	hiding	is
done	by	declaring	that	the	data	in	class	is	private.	We	have	to	remember	that	the
data	and	functions	in	a	class	are	private	by	default.	But	it	 is	recommended	that
we	 should	 declare	 it	 private	 by	 using	 private	 access	 specifiers,	 even	 in	 a	 case
where	 declaration	 is	 not	 necessary.	 We	 may	 also	 declare	 a	 function	 private.
Whenever	a	 function	 is	declared	private,	 it	can	only	be	called	by	 its	own	class
object.

●						Public	Access	Specifier
When	we	have	to	use	our	data	or	functions	outside	of	the	class,	it	is	declared	to
be	public.	We	should	keep	 in	mind	 that	while	public	access	can	 technically	be
declared	for	both	data	and	functions,	the	rule	of	data	hiding	states	that	we	should
use	public	access	specifier	only	for	functions.

In	general,	data	is	declared	private.	Whenever,	we	may	want	to	access	that	data,
we	 can	 do	 it	 by	 using	 public	 functions.	 However,	 it	 is	 possible	 to	make	 data
public.	We	can	do	it	by	using	the	method	of	public	access	specifier	and	declaring
data	to	be	public.

Usually,	 it's	a	 suggestion	 to	code	private	members	 first	and	public	members	at
last.	It	has	two	major	reasons,	first,	grouping	all	the	class	members	of	the	same
specifier	makes	the	code	easier	to	read	and	understand,	secondly,	if	the	access	is
specified,	all	the	group	members	that	are	following	it	have	the	same	access	until
a	new	access	is	specified.	By	declaring	the	private	members	first,	there	would	be
a	very	low	chance	of	syntax	error	or	runtime	error	in	your	program.

●							Creating	a	Class

After	reading	the	basic	concepts	of	a	class,	we	can	now	write	our	first	class.	A
class	 must	 be	 declared	 before	 it	 can	 be	 used.	We	 have	 to	 remember	 that	 the
declaration	describes	a	 type	without	even	having	any	memory	allocation	for	 it.
In	 other	words,	we	 can	 say	 that	 the	 class	 declaration	 is	 just	 a	 skeleton	 of	 the
class,	 which	 declares	 other	 members	 of	 the	 class.Declaring	 a	 class	 means
creating	 a	 skeleton	 to	 describe	 and	 create	 the	 class	 functions	 and	 class	 data.

Declaring	a	 class	doesn’t	mean	we	don’t	 have	 to	write	 functions	 anymore,	we
will	be	in	need	of	writing	the	functions.	We	should	keep	in	mind	that	the	space	is
automatically	 allocated	 whenever	 the	 object	 is	 created,	 using	 the	 concept	 of
classes.

●							Declaring	a	Class

To	 declare	 a	 class,	 we	 use	 the	 keyword	 “class”	 followed	 by	 its	 name.	 Let's
suppose	we	are	declaring	a	class	named	as	fraction	with	two	integers	numerator
and	denominator	in	it.	So,	to	create	this	class,	we	will	use	the	keyword	”class”
followed	by	“fraction”.This	would	be	using	the	same	format	as	we	use	for	every
other	 data	 type.	After	 that,	members	 of	 the	 class	 are	 coded	 in	 a	 block.	As	we
studied,	we	will	code	the	private	members	first	and	then	we	will	move	towards
the	public	members.	In	the	following	code	we	are	including	just	two	methods	in
the	class,	the	first	one	is	to	store	the	fraction	data	in	the	class	and	the	second	one
is	to	print	the	fraction.

class	fraction
{

private;

Int	numerator;

Int	denominator;

public;

Void	store	(int	numer,	int	denom);

Void	print	(void);
};	//	fraction

In	here,	 the	name	of	 the	class	 is	 fraction.	Class	name	 immediately	 follows	 the
keyword	“class”	at	 the	beginning	of	class	declaration.	The	body	of	 the	class	 in
enclosed	in	braces.	Firstly,	there	are	private	members	and	then	there	are	public.

In	 private	 section,	 we	 have	 declared	 two	 integers,	 i.e.	 numerator	 and
denominator.	These	declarations	are	made	as	any	other	integer	declaration	in	any
part	 of	 the	 code.	 It	 is	 followed	 by	 the	 identifier	 and	 it	 terminates	 	 with	 a
semicolon.	As	this	is	a	class	declaration,	it	is	impossible	to	assign	initial	values
to	the	data	when	the	variables	are	being	declared.	After	 the	private	section,	we
code	the	public	access	methods	by	coding	the	prototype	statements	for	their	own

functions.	Moreover,	we	have	to	pay	close	attention	to	the	semicolon	at	the	end
of	the	class	declaration,	otherwise,	we	will	get	a	compilation	error.

●							Class	Definition

After	we	make	the	class	declaration,	we	are	ready	to	write	its	functions.	Before
writing	functions,	we	need	to	know	about	a	new	operator,	i.e.	Scope	Resolution
Operator	“:	:”.	Scope	resolution	operator	is	a	primary	expression.	It	is	evaluated
before	all	other	expressions.	We	can	write	these	expressions	as	“	class_name	:	:
member_name	”.

Scope	resolution	operator	is	used	to	eliminate	every	ambiguous	reference	to	the
identical	 identifiers.	 For	 example,	we	 need	 to	 print	 a	 function	 for	 our	 fraction
class.	At	 the	 same	 time,	 there	may	exist	 another	 class	 called	print,	 somewhere
else	in	our	program.	So,	now	we	have	two	print	functions.	We	have	to	identify
which	 print	 belongs	 to	 our	 fraction	 class.	 This	 is	 where	 we	 use	 the	 scope
resolution	operator.
To	 better	 understand	 the	 concept	 of	 classes	 and	 scope	 resolution	 variable	 we
may	look	at	the	following	code

#include<iostream>

using	namespace	std;			

class	Alpha

{

static	int	n;		

public:
static	int	m;					

void	func(int	N)		

{

cout	<<	"Value	of	static	N	is	"	<<	Alpha::n;

cout	<<	"\nValue	of	local	N	is	"	<<	n;		

}
};

int	Alpha::n	=	69;

int	Alpha::m	=	96;

int	main()

{

Alpha	object;

int	n	=	3	;
object.func(n);

cout	<<	"\nAlpha::M	=	"	<<	Alpha::m;

return	0;

}

7.2	Defining	a	Class	Object

In	the	last	point,	we	declared	a	class	and	defined	its	two	member	functions.	We
have	 not	 defined	 any	 objects	 of	 the	 fraction	 class,	 so,	 at	 this	 point	 it's	 just	 an
abstraction	until	we	define	an	object	of	the	class.

As	we	know,	declaration	of	a	class	makes	a	type,	we	may	use	class	identifiers	as
every	 other	 standard	 type.	 To	 define	 a	 variable,	 we	 simply	 state	 the	 type	 and
name	of	the	object	as
Int	quality	;

●							Instantiation

In	c++,	defining	an	object	with	a	class	type	is	known	as	instantiation.	When	we
defined	quality	in	the	above	mentioned	example,	we	created	instantiation	of	the
class	int.	Every	instance	of	a	class	is	known	as	object.	As	we	may	have	as	many
integers,	in	a	code,	as	we	need.	Similarly,	we	may	have	as	many	class	objects,	as
we	need,	after	once	we	declare	the	class	and	define	its	functions.

●							Accessing	Class	Members

We	know	that	the	members	within	a	class	can	be	accessed	by	statements	in	the
program	as	long	as	they	are	public.	A	problem	arrives,	however,	when	we	have
multiple	instances	of	the	same	class	as	shown	below.

Fraction	fr	;

Fraction	fr2	;
When	we	want	 to	print	fr1,	how	do	we	distinguish	 it	 from	fr2?	We	need	some
way	to	say	“Print	fr1”.	If	we	were	to	simply	say,

Print	()

C++	 would	 not	 know	 which	 fraction	 we	 were	 talking	 about.	 To	 solve	 this
problem,	 C++	 uses	 an	 operator	 that	 is	 common	 to	many	 other	 languages,	 the
member	 operator,	 which	 is	 simply	 a	 period	 “.”.	 Referring	 to	 our	 two	 fraction
objects,	 what	 we	 need	 to	 say	 is	 that	 we	 want	 to	 use	 the	 print	 function	 that
operates	on	the	fr1	object.	This	is	done	by	coding	the	object	name,	the	member
operator,	and	the	function	name

fr1.print	();

Even	 though	 the	 print	 function	 has	 no	 parameters,	 we	 must	 still	 use	 its
parentheses.	 The	 parentheses	 are	 the	 function’s	 operators.	 If	 they	 are	missing,
then	the	value	of	the	expression	is	the	function’s	address,	which	is	meaningless
in	this	context.	This	is	how	we	code	the	statement	to	print	fr2’s	data

fr2.print	();

To	store	the	fraction	69/96	in	fr1	and	the	fraction	6/6	in	fr2,	we	must	specify	first
the	fraction	class	and	then	store	function.
fr1.store	(69/96);

fr1.store	(6/6);

When	we	 define	 an	 object,	we	 create	 only	 the	 daa	members	 of	 the	 class.	 The
class’s	member	 function	 exist	 separately	 from	 the	 instantiated	 objects	 and	 are
shared	by	them.	Thus,	if	we	define	two	fractions	fr1	and	fr2,	each	fraction	object
has	a	separate	numerator	and	denominator,	but	 there	 is	only	one	store	and	one
print	function	that	can	be	used	by	both	fraction	objects.	For	example

//	First	Call

void	Fraction	:	:	store	(int	numer	,	int	denom)

{
numerator	=	numer;

denominator	=	denom;

//	Second	Call

return;

}

●							Using	Classes

Let’s	write	a	simple	program	to	demonstrate	 the	use	of	our	fraction	class.	This
program	reads	the	numerator	and	denominator	from	the	keyboard,	stores	them	in
a	fraction	object,	and	then	prints	the	fraction.
First,	 we	 create	 a	 header	 file	 for	 the	 fraction	 class.	 To	 abide	 by	 software
engineering	principles	such	as	encapsulation	and	reusability,	the	class	definition
and	its	functions	are	often	put	in	separate	source	files.

7.3	Constructors	and	Destructors

In	 C++,	 constructors	 are	 special	 member	 functions	 that	 are	 called	 when	 an
instance	of	a	class	is	created	or	copied.	Destructors	are	special	member	functions
that	are	called	when	an	instance	of	a	class	is	destroyed.

A	class	object	can	be	created	in	four	ways
●	 	 	 	 	When	memory	 is	allocated.	Memory	 is	allocated	when	an	object,

global	or	local,	is	defined.

●	 	 	 	 	When	an	object	 is	 instantiated	 in	dynamic	memory	with	 the	new
operator.

●						By	explicitly	calling	the	class’s	constructor.

●	 	 	 	 	When	 a	 temporary	 object	 is	 created.We	 should	 remember	 that	 a
temporary	 object	 is	 created	 implicitly	 by	 the	 compiler	 when
necessary.

●							Constructors

There	are	three	basic	types	of	constructors

●						Default	Constructors
●						Initialization	Constructors

●						Copy	Constructors

One	 and	 only	 one	 type	 of	 these	 constructors	 is	 called,	 whenever	 an	 object	 is
created.	 Which	 one	 will	 be	 called,	 it	 depends	 upon	 how	 the	 class	 object	 is
created.	We	have	to	keep	in	mind	that

●	 	 	 	 	Default	constructors	are	called	when	an	object	is	created	(defined)
without	initialization.

●	 	 	 	 	Initialization	constructors	are	called	when	an	object	is	created	and
the	program	specifies	initializing	parameters	that	are	not	class	type.

●	 	 	 	 	 Copy	 constructors	 are	 called	 when	 the	 parameters	 contain	 an
instance	of	the	class	object.

All	constructors	follow	two	basic	rules

●	 	 	 	 	Name	 of	 the	 function	 is	 basically	 the	 name	 of	 the	 class,	 So,	 the
constructor	for	the	function	class	must	be	Fraction.

●	 	 	 		A	function	must	have	no	return	type.	This	rule	is	strictly	followed,
even	void	type	is	not	allowed.

To	understand	the	concept	of	constructors,	we	may	take	a	look	at	the	following
code

#include	<iostream>
using	namespace	std;

class	construct

{

public:

int	n,	m;

//	Basic	Constructor
construct()

{

n	=	69;

m	=	96;

}

};

int	main()
{

//	Default	constructor	is	called	automatically	when	the	object	is	created

construct	o;

cout	<<	"n:	"	<<	o.n	<<	endl

<<	"m:	"	<<	o.m;

return	1;
}

●							Destructors

Destructors	are	the	opposite	of	constructors.	They	are	used	when	an	object	dies,
either	because	it’s	no	longer	in	scope	or	because	it		has	been	deleted.	In	general,
we	will	not	need	destructors.	When	an	object	has	pointers	 to	dynamic	memory
that	 must	 also	 be	 released,	 however,	 destructors	 are	 necessary	 because
destroying	pointers	doesn’t	release	the	memory.If	enough	objects,	with	dynamic
memory	are	temporarily	created,	such	as	when	we	pass	it	by	value,	or	when	we
return	it,	dynamic	memory	can	instantly	become	exhausted.

Like	 constructors,	 destructors	 must	 carry	 the	 same	 identifier	 as	 the	 class.
Unlinke	 constructors,	 there	 is	 only	one	destructor	 function	because	destructors
can	 have	 no	 parameters.	 To	 separate	 them	 from	 constructors,	 destructors	 are
prefixed	with	a	tilde	sign	“~”.	We	may	understand	the	concept	of	destructors	by
going	through	this	code.

#include<iostream>

#include<conio.h>

using	namespace	std;

class	AlphaClass
{

public:		

AlphaClass()

{

cout	<<	"Constructor	of	the	AlphaClass	:	Object	Created"<<endl;

}
//	Destructor	for	the	AlphaClass

~AlphaClass()

{

cout	<<	"Destructor	of	the	AlphaClass	:	Object	Destroyed"<<endl;

}

};

int	main	()
{

	AlphaClass	des;			

	getch();

	return	0;

}

7.4	Programming	Examples

Problem	-	1

Write	 a	 program	 to	 show	 the	 working	 of	 classes	 and	 objects	 in	 C++
programming.

Solution	:

#include	<iostream>

#include<conio.h>

using	namespace	std;

class	boy
{

public:

string	name;

int	number;

};

int	main()
{

boy	obj;

cout	<<	"Enter	the	Name	:	";

cin	>>	obj.name;

cout	<<	"Enter	the	Shirt	Number	:	";

cin	>>	obj.number;

cout	<<	obj.name	<<	"	.	"	<<	obj.number	<<	endl;
getch();

return	0;

}

Problem	-	2

Write	a	C++	program	to	convert	time	into	seconds,	using	the	concept	of	classes.

Solution	:

#include	<iostream>

#include	<iomanip>

using	namespace	std;

class	Time
{

private:

int	seconds;

int	hour,minute,second;

public:

void	getTime(void);
void	convertIntoSeconds(void);

void	displayTime(void);

};

void	Time::getTime(void)

{

cout	<<	"Enter	Your	Desired	Time:"	<<	endl;

cout	<<	"Hours?			";										cin	>>	hour;
cout	<<	"Minutes?	";										cin	>>	minute;

cout	<<	"Seconds?	";										cin	>>	second;

}

void	Time::convertIntoSeconds(void)

{

seconds	=	hour*3600	+	minute*60	+	second;

}

void	Time::displayTime(void)

{

cout	<<	"The	time	is	=	"	<<	setw(2)	<<	setfill('0')	<<	hour	<<	":"
<<	setw(2)	<<	setfill('0')	<<	minute	<<	":"

<<	setw(2)	<<	setfill('0')	<<	second	<<	endl;

cout	<<	"Time	in	total	seconds:	"	<<	seconds;

}

int	main()

{
Time	T;

T.getTime();

T.convertIntoSeconds();

T.displayTime();		

return	0;

}

7.5	Exercise	Sets

●	 	 	 	 	Write	a	C++	program	that	simplifies	a	fraction.	For	example,	3/6	should
simplify	to	1/2.	It	should	have	a	void	return	type.

●					Define	a	class	called	Time.	The	class	should	have	four	data	members

●						Hour

●						Minute

●						Second
●						Am/Pm	flag

Remember	that

●					This	should	have	a	member	function	to	initialize	the	data	members.

●					This	should	have	a	member	function	to	increment	the	seconds.

●						This	should	have	a	member	function	to	print	time.

●					This	should	have	a	binary	friend	function	to	compare	two	clocks	and
return	 a	 structure	 showing	 the	 difference	 in	 hour,	 minute	 and
second.

Chapter	8:	Concept	of	“Strings”	in	C++

It	is	impossible	to	write	a	well	structures	and	human	engineered	program	without
using	strings.	Although	you	weren’t	aware	of	 this	but	your	 first	C++	program,
that	you	write	in	chapter	one	used	string.	We	have	been	using	strings	ever	since.

#include	<iostream>
using	namespace	std;

int	main()

{

cout	<<	"Hello	to	the	world	of	C++!	";

return	0;

}

Some	 computer	 programming	 languages	 provides	 an	 intrinsic	 string	 type,	 we
have	no	string	type	in	C++.	So,	we	can	say	that	 the	programmer	is	responsible
for	 the	 implementation	 of	 strings	 in	 C++.Because	 strings	 are	 so	 important,
however,	 functions	 to	 manipulate	 them	 have	 been	 defined	 in	 an	 ad-hoc	 C++
standard	library.
In	this	chapter,	we	are	going	to	study	about	how	strings	are	defined	and	stored.
After	that	we	will	explore	the	standard	string	functions	that	are	available	in	C++.
Finally,	we	will	get	to	know	about	the	development	of	a	string	class.

8.1	Strings

In	general,	string	is	a	series	of	characters	treated	as	one	unit.	Computer	Science
has	 long	recognized	 the	 importance	of	string,	but	 it	has	not	adopted	a	standard
for	their	implementation.

Usually,	 all	 string	 implementations	 	 treat	 a	 string	 as	 a	variable-length	piece	of
data.	 For	 example,	 one	 of	 the	 most	 common	 of	 all	 strings:	 a	 name.	 Names,
whether	of	 a	person,	 a	book,	 a	 car	or	whatever,	 their	 length	vary	 according	 to
their	nature.

In	a	nutshell,	we	have	a	data	that	may	vary	in	size,	how	we	may	accommodate
that	data	in	our	program!	For	this,	we	have	two	options

●						To	store	that	data	in	fixed	length	object

●						To	store	that	data	in	variable	length	object

●							Fixed	Length	String

Whenever	 we	 are	 implementing	 a	 fixed	 length	 string	 format,	 we	 must	 first
decide	 what	 size	 is	 to	 make	 the	 variable.	 If	 we	 make	 the	 size	 too	 small,	 we
would	not	be	able	to	store	all	the	data.	If	we	make	it	too	large,	we	will	waste	the
memory.
Another	possible	problem	associated	with	storing	variable	data	in	a	fixed-length
data	structure	 is	how	to	differentiate	data	from	non-data.We	have	 to	remember
that	values	of	non	data	can	not	be	stored.

●							Variable	Length	String

A	more	preferred	solution	is	to	create	a	structure	that	can	expand	and	contract	to
accommodate	the	data.	Thus,	to	store	a	person's	name	that	consists	of	only	one
letter,		the	structure	would	provide	enough	storage	for	storing	one	character.	To
store	 a	 person's	 name	 that	 consists	 of	 thirty	 characters,	 the	 structure	 would
expand	to	provide	storage	for	thirty	characters.

In	C++,	we	have	two	common	techniques	to	use	such	kind	of	strings

●						Length-Controlled	String

This	 kind	 of	 strings	 add	 a	 count	 that	 specifies	 the	 number	 of	 characters	 in	 a
string.	Typically,	 the	count	 is	a	 single	byte,	which	provides	 for	 strings	of	upto
255	characters.	This	count	is	further	used	by	the	string	manipulation	functions	to
determine	the	actual	length	of	the	data.

●						Delimited	Strings
Another	 method	 to	 identify	 the	 end	 of	 the	 string	 is	 a	 delimiter.	 The	 main
disadvantage	of	the	delimiter	is	that	it	eliminates	one	character	for	being	used	for
the	data.

8.2	C++	Strings

In	C++,	string	is	a	variable-length	array	of	characters	that	is	delimited	by	the	null

character.	 There	 is	 nothing	 in	 C++,	 except	 from	 the	 null	 delimiter,	 that	 can
prevent	an	ASCII	character	to	be	used	in	a	string.

●							Storing	Strings

A	string	is	stored	in	an	array	of	characters.	It	is	terminated	by	the	null	character.
We	 have	 to	 remember	 the	 difference	 between	 the	 character	 stored	 in	memory
and	a	one-character	string	stored	 in	 the	memory.	The	character	needs	only	one
memory	location.	On	the	other	hand,	one	character	string	requires	two	memory
locations,	i.e.	one	for	the	data	the	other	one	for	delimiter.

●							String	Literals

A	string	literal	or	string	constant	is	a	sequence	of	characters	enclosed	in	double
quotes.	For	example
“Hello	”

“Hello	to	the	world	of	C++	”

Whenever,	we	use	string	constants	 in	a	program,	C++	automatically	creates	an
array	 of	 characters,	 initializes	 it	 to	 a	 null	 delimited	 string,	 stores	 it	 and
remembering	 its	 address.	We	 should	 keep	 in	 mind	 that	 the	 string	 constant	 is
always	 enclosed	 in	 double	 quotes.	 Using	 the	 double	 quotes,	 compiler	 can
identify	data	as	a	string	value.

8.3	String	Input/Output

In	C++,	we	have	two	basic	ways	to	read	or	write	strings.

●	 	 	 		We	may	read	strings	with	extraction	operator	“>>”	and	write	them
with	insertion	operator	“<<”.

●						We	can	use	a	special	string-only	function,	“getline”.

●							String	Input	“>>”

In	C++,	we	can	easily	assign	a	value	to	a	string.	All	we	have	to	do	is	to	use	an
extraction	 operator	 “>>”.	 Once	 it	 reads	 a	 character,	 it	 reads	 until	 it	 finds	 a
whitespace,	putting	each	character	in	the	array,	in	order.

We	may	understand	it	better	with	this	code

#include	<iostream>

using	namespace	std;

int	main()
{

char	string[100];

cout	<<	"Enter	a	string:	";

cin	>>	string;

cout	<<	"Your	entered	string	:	"	<<	string	<<	endl	<<	endl;

cout	<<	"Enter	another	string:	";
cin	>>	string;

cout	<<	"Your	entered	string	:	"<<	string	<<endl;

return	0;

}

For	better	understanding,	this	code	may	be	helpful	in	string	input

#include	<iostream>

#include	<string>

using	namespace	std;

int	main()

{

char	yourfirstString[100];
cout	<<	"Enter	a	String:	";

cin>>yourfirstString;

cout<<"You	entered	:	"	<<	yourfirstString;

}

●							String	Output	“<<”

String	output	 is	usually	represented	with	an	 insertion	sign	“<<”.	There	are	 two
options	of	interest	when	you	write	a	string

●						Justification
●						Width

Widht	 sets	 the	minimum	printing	area,	 for	 the	 string	 in	an	output.	We	have	 to
remember	that	within	the	print	width,	string	maybe	justified	to	the	left	or	to	the
right.	In	the	following	example,	the	first	example	writes	a	left	justified	string	to
the	standard	output	unit	and	the	second	example	uses	the	same	example	to	show
left-justified	string	to	a	file.

Example	-	1	:

fsOut.setf	(ios	:	:	left);

fSout	 “|”	 <<	 setw	 (40)	 <<	 “This	 is	 a	 left-justified	 (default)	 string”	 <<	 “|”	 <<
endl;

Output	:
|																																				This	is	a	left-justified	(default)	string|

Example	-	2	:

fsOut.setf	(ios	:	:	right);

fSout	“|”	<<	setw	(40)	<<	“This	is	a	right-justified	string”	<<	“|”	<<	endl;

Output	:

|This	is	a	right-justified	string																																				|
●						Reading	String		getline()

In	C++,	the	getline	function	extracts	text	from	an	input	stream	and	makes	a	null
terminated	string	out	of	it.

When	the	text	is	read	with	getline,	the	text	is	placed	in	the	receiving	string	and
the	 terminating	 character	 is	 replaced	 by	 the	 string	 delimiter	 character.	 This
statement	 is	 always	 true,	 regardless	of	whether	 the	 text	 is	 being	 read	 from	 the
keyboard,	through	cin,	or	from	a	user	generated	file,	i.e.	fsln.

For	further	understanding	of	this	function,	we	have	to	look	at	this	code:

#include	<iostream>

#include	<string>

using	namespace	std;
int	main()

{

	string	string;

	cout	<<	"Kindly	enter	your	name:	";

	getline(cin,	string);

	cout	<<	"	"	<<	endl	<<	endl	<<	endl	<<	endl;
	cout	<<	"Hello	"	<<	string	<<	"!"<<	endl;

	cout	<<	"Nice	to	meet	you!"	<<	endl;

	cout	<<	"We	welcome	you	to	the	world	of	C++!"	<<	endl;

	return	0;

}
Moving	 forward,	 there	 is	 a	 lot	 of	 difference	between	 reading	 a	 string	with	 the
extraction	operator	 	 and	 reading	 the	 same	 line	with	getline	 function.	When	we
read	 the	 data	 using	 extraction	 operator,	 compiler	 stops	 reading	 with	 the	 first
white	space.	On	the	other	hand,	when	we	read	the	data	with	a	getline	function,
all	characters,	including	whitespaces	are	rad	into	the	string	until	the	termination
character	 is	 found	or	until	 the	maximum	number	of	characters	specified	by	the
second	parameter	have	been	read.

8.4	Array	and	Strings

We	discussed	 arrays	 in	 previous	 chapter.	We	 are	 familiar	with	 the	 concept	 of
ragged	 array.	 Ragged	 arrays	 are	 very	 common	 with	 with	 strings.	 It	 is	 more
efficient	 and	 much	 easier	 to	 create	 a	 ragged	 array	 using	 an	 array	 of	 string
pointers.

To	better	understand	this	concept,	we	may	check	the	following	code	:

#include<iostream>
#include<bits/stdc++.h>

using	namespace	std;

int	main()

{

	char	birds[4][15]	=	{	"Sparrow",	"Eagle",	"Raven",	"Batman"	};

	for	(int	n	=	0;	n	<	4;	n++)
	cout	<<	colour[n]	<<	"\n";

	return	0;

}

8.5	Compare	Packed	Strings

While	 working	 with	 strings,	 we	 will	 sometimes	 find	 out	 that	 two	 strings	 are
logically	the	same	but	different	on	the	machine.

For	such	statements,	we	should	look	at	this	code

#include<iostream>

#include<conio.h>
using	namespace	std;

void	compareOperation(string	stringn,	string	stringm)

{

	 //	 This	 returns	 a	 value	 that	 is	 less	 than	 0	 (stringn	 is	 smaller	 then
stringm

	if((stringn.compare(stringm))	<	0)

	cout	<<	stringn	<<	"	is	smaller	than	"	<<	stringm	<<	endl;
	//	This	returns	0.	Here	stringn	is	being	comapared	to	stringn,	itself

	if((stringn.compare(stringn))	==	0)

	cout	<<	stringn	<<	"	is	equals	to	"	<<	stringn	<<	endl;

	else

	cout	<<	"Strings	didn't	match	";

}

//	This	would	be	our	driver	Code

int	main()

{
	string	stringn("Alpha");

	string	stringm("Beta");

	compareOperation(stringn,	stringm);

	return	0;

}

8.6	Morse	Code	Program	Design

Morse	 code	 is	 the	 language	 that	was	 that	was	 used	 to	 send	messages	 through
telegraph,	in	the	middle	of	the	nineteenth	century.	First	of	all	we	have	to	look	at
the	table	of	Morse	code.

Alphabet Symbol Alphabet Symbol Alphabet Symbol Alphabet Symbol

A .- H …. O --- V …-

B -... I .. P .--. W .--

C -.-. J .--- Q --.- X -..-

D -.	. K -.- R .-. Y -.--

E . L .-.. S ... Z --..

F .	.-	. M -- T -

G --. N -. U ..-

Problem	:

Write	a	C++	program,	using	the	concept	of	strings	that	reads	a	text	from	user	and
encrypts	it	to	Morse	Code.

Solution	:

#include	<iostream>
#include	<string>

#include	<algorithm>

using	namespace	std;

int	main()

{

const	char	Alphabet[37]	=	{	'	',	 'a',	'b',	'c',	 'd',	'e',	 'f',	 'g',	'h',	'i',	 'j',	 'k',	'l',
'm',	'n',	'o',	'p',	'q',	'r',	's',	't',	'u',	'v',	'w',	'x',	'y',	'z',	'1',	'2',	'3',	'4',	'5',	'6',
'7',	'8',	'9',	'0'	};
const	string	morseAlphabet[37]	=	{	"				",	".	___",	"___	.	.	.",	"___	.	___	.",
"___	.	.",	".",	".	.	___	.",	"___	___	.",	".	.	.	.",	".	.",	".	___	___	___",	"___	.
___",	".	___	.	.",		"___	___",	"___	.",	"___	___	___",	".	___	___	.",	"___	___
.	___",	".	___	.",	".	.	.",	"_",	".	.	___",	".	.	.	___",	".	___	___",	"___	.	.	___",
"___	.	___	___",	"___	___	.	.",	".	___	___	___	___",	".	.	___	___	___",	".	.	.
___	___",	".	.	.	.	___",	".",	"___",	"___	___	.	.	.",	"___	___	___	.	.",
"___	___	___	___	.",	"___	___	___	___	___"};

string	textToAlter	=	"";

string	newerText	=	"";

cout	<<	"Enter	your	message	to	encrypt	it	to	Morse	code"	<<	endl;

getline(cin,	textToAlter);

transform(textToAlter.begin(),	 textToAlter.end(),	 textToAlter.begin(),
::tolower);

for	(unsigned	int	n	=	0;	n	<	textToAlter.size();	n++)	{
for	(unsigned	short	m	=	0;	m	<	37;	m++)	{

if	(textToAlter[n]	==	Alphabet[m])	{

newerText	+=	morseAlphabet[m];

newerText	+=	"			";

break;

}

}
}

cout	<<	"Your	message	in	Morse	code"	<<	endl	<<	newerText;

int	x;

cin	>>	x;

return	0;

}

8.7	The	String	Class

The	 data	 for	 our	 string	 class	 is	 quite	 simple,	 i.e.	 One	 string	 pointer	 and	 one
length	field.	The	string	pointer	 is	created	when	a	member	of	 the	string	class	 is
defined.	While	 its	 contents	 vary	 depending	 on	 the	 initializers	 provided	 in	 the
application	 code,	 the	 memory	 for	 the	 string	 itself	 is	 always	 allocated	 out	 of
dynamic	memory.	If	the	size	of	the	string	is	changed	in	any	way,	we	delete	the
current	string	in	memory	and	allocate	a	new	one.

For	further	understanding,	have	a	look	at	the	following	code

#include<iostream>

#include<bits/stdc++.h>
using	namespace	std;

int	main()

{

	//	Here	are	many	constructor	of	our	string	class

	//	We	have	to	initialize	by	a	raw	string

	string	stringa("first	string,	named	as	A");

	//	Then	we	will	initialize	another	string

	string	stringb(stringa);

	 //	 After	 that	 we	 have	 to	 initialize	 by	 character	 with	 the	 number	 of
occurrences

	string	stringc(6,	'#');

	//	Initialization	here,	in	this	step,	by	part	of	another	string
	string	stringd(stringa,	7,	7);

	//	Here,	we	initialize	by	part	of	another	string

	string	stringe(stringb.begin(),	stringb.begin()	+	6);

	cout	<<	stringa	<<	endl;

	cout	<<	stringb	<<	endl;

	cout	<<	stringc	<<	endl;
	cout	<<	stringd	<<	endl;

	cout	<<	stringe	<<	endl;

	//	Here,	we	use	assignment	operator

	string	stringf	=	stringd;

	//	Here,	we	deletes	all	characters	from	string

	stringd.clear();

	//	Here,	both	length()	&	size()	return	the	length	of	the	string
	int	len	=	stringf.length();

	cout	<<	"Length	of	string	is	:	"	<<	len	<<	endl;

	char	ch	=	stringf.at(2);

	cout	<<	"third	character	of	string	is	:	"	<<	ch	<<	endl;

	char	ch_f	=	stringf.front();

	char	ch_b	=	stringf.back();
	cout	<<	"First	char	is	:	"	<<	ch_f	<<	",	Last	char	is	:	"

	<<	ch_b	<<	endl;

	const	char*	charstr	=	stringf.c_str();

	printf("%s\n",	charstr);

	stringf.append("	extension");

	stringd.append(stringf,	0,	6);

	cout	<<	stringf	<<	endl;

	cout	<<	stringd	<<	endl;
	if	(stringf.find(stringd)	!=	string::npos)

	cout	<<	"stringd	found	in	stringf	at	"	<<	stringf.find(stringd)

	<<	"	position	:	"	<<	endl;

	else

	cout	<<	"stringd	not	found	in	stringf"	<<	endl;

	cout	<<	stringf.substr(7,	3)	<<	endl;
	cout	<<	stringf.substr(7)	<<	endl;

	stringf.erase(7,	4);

	cout	<<	stringf	<<	endl;

	stringf.erase(stringf.begin()	+	5,	stringf.end()	-	3);

	cout	<<	stringf	<<	endl;

	stringf	=	"This	is	an	example";

	stringf.replace(2,	7,	"ese	are	test");
	cout	<<	stringf	<<	endl;

	return	0;

}

8.8	Programming	Examples

Problem

Write	a	C++	program,	using	the	concept	of	strings	that	reads	a	Morse	Code	from
user	and	decrypt	it.

Solution	:

#include	<iostream>

#include	<string>

#include	<cctype>

using	namespace	std;
string	engtomol	(string,	string[]);

string	moltoeng	(string,	char[]);

int	main	()

{

char	 alpha[26]	 =
{'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};

string	morse[81]	=	{".-",	"-...",	"-.-.",	"-..",	".",	"..-.",	"--.",	"....",	"..",
".---",	"-.-",	".-..",	"--",	"-.",	"---",	".--.",	"--.-",	".-.",	"...",	"-",	"..-",	"...-",
".--",	"-..-",	"-.--",	"--.."};

string	english,	morsecode;

char	choice;

char	repeat='y';

while	(repeat=='y')

{

cout	<<	"Select	1	 to	decode	English	to	Morse	code.\nSelect	2	 to	encode
Morse	code	to	English	"	<<	endl;

cin	>>	choice;
if	(choice=='1')

{

cout	 <<	 "NOTE.	 DO	 NOT	 INPUT	 A	 NON	 ENGLISH
CHARACTER.	 THIS	 TRANSLATOR	 EXCLUSIVELY	 TRANSLATES
ENGLISH	(CAPITALIZED	AND	NON	CAPITALIZED).\n"	;

cout	 <<	 "Enter	 any	 word	 to	 translate,	 each	 word	 seperated	 by	 a
space	if	you	want	to	translate	more	than	one	word:	";

cin.get();

getline(cin,english);

cout	<<	"Your	Message:	"	<<	english	<<	endl;

cout	<<	"MORSE	CODE:	"	<<	engtomol(english,	morse)	<<	endl;

}
else	if	(choice=='2')

{

cout	<<	"Enter	a	morsecode	 to	 translate,	each	 letter	code	seperated
by	 a	 space.	 If	 you	 want	 to	 translate	 more	 than	 one	 word,	 have	 3	 spaces
between	each	word	(for	example,	...	---	---	...):	";

cin.get();

getline(cin,morsecode);

cout	<<	"MORSECODE:	"	<<	morsecode	<<	endl;
cout	<<	"Your	Message:	"	<<	moltoeng	(morsecode,	alpha)	<<	endl;

}				

cout	<<	"Would	you	like	to	continue?	Press	y	to	repeat.	Press	any	other
key	to	exit.	";

cin	>>	repeat;

}

return	0;

}			
string	engtomol	(string	english,	string	morse[])

{

string	morsevalue	;

string	spacesbtwletters=	"	";

string	spacesbtwwords	=	"		";

for	(int	k=0;	english[k];	k++)
{

if	(english[k]!=	'	')

{			english[k]=toupper(english[k]);

morsevalue=spacesbtwletters+=morse[english[k]-'A']+"	";

}

if	(english[k]=='	')
{

spacesbtwletters+=spacesbtwwords;

}

}

return	morsevalue;

}
string	moltoeng	(string	morsecode,	char	alpha[])

{

const	int	count=0;

string	tran;

string	spacesbtwlettercode=	"	";

string	spacesbtwwordcode	=	"	";

for	(int	k=0;	morsecode[k];	k++)
{

if	(morsecode[k]!='	')

{

tran=spacesbtwlettercode+=alpha[k];

}

}
return	tran;

}

8.9	Exercise	Sets

●	 	 	 	 	Write	 a	 function	 that	 accepts	 a	 string	 and	 deletes	 all	 the	 trailing
spaces.	Returns	 true,	 if	 spaces	were	 deleted.	 False,	 if	 there	 are	 no
spaces	to	delete.

●					Write	a	function	that	accepts	a	string	and	delete	the	last	character	by
moving	the	null	character	one	position	left.

●					Write	a	program	that	accepts	a	string	and	deletes	the	first	character.

Conclusion

Congratulations!	If	you've	made	it	this	far.	We	hope	that	you	have	truly	begun	to
understand	 the	 basic	 concepts	 and	 complexities	 of	 C++.	 At	 this	 point,	 we
suppose,	 you	 should	 be	 able	 to	 read	 almost	 any	 code	 written	 in	 C++	 with
confidence	and	understanding.

We	have	tried	to	cover	a	fair	number	of	important	C++	language	features	in	this
book,	including	some	of	the	concepts	of	object-oriented	programming,	which	is
also	 known	 as	 "OOP".	 Furthermore,	 we	 have	 tried	 to	make	writing	 clear	 and
easy	 to	 understand,	 and	 this	 book	 includes	 many	 theoretical,	 practical,	 and
explained	examples.
In	 the	 world	 of	 computer	 science	 and	 computer	 programming,	 you	 may	 find
many	academic	books.	Many	of	 them	are	designed	 for	 students,	and	 there	you
may	find	some	other	books	which	are	purposely	destined	for	the	developers	who
need	personal	advice	for	how	to	resolve	syntax	problems	and	runtime	problems,
in	the	code,	when	developing	a	program.	If	you	learn	by	coding,	indeed,	in	this
book,	 few	 pages	 do	 not	 have	 source	 code	 for	 C++,	 but	 every	 concept	 is
demonstrated	by	at	least	one	coding	sample.

The	code	samples	are	very	well-formatted,	easy	 to	 read,	and	clean	so	 that	you
may	find	C++	programming	easy.

Moving	forward,	if	you	are	a	beginner	in	learning	C++,	just	read	this	book	out	as
this	book	contains	eight	chapters	so	that	you	may	have	a	better	understanding	of
C++	within	a	week.

Some	people	may	say	 that	 this	book	 is	not	 for	beginners!	 Just	 look	at	 its	 size!
This	book	is	just	too	overwhelming	for	a	beginner	like	you!

Don't	listen	to	them!

You	 should	 go	 for	 an	 easier	 one	 if	 you	 find	 one.	 Well,	 we	 cannot	 tell	 you
whether	this	book	is	right	or	wrong.	We	guess	that	everyone's	understanding	is
quite	different.	We	can	suggest	 that	 this	book	 is	suitable	for	a	person	who	is	a
noob	in	computer	programming,	but	a	business	graduate!

References

●	 	 	 	 	 Forouzan,	 B.	 A.,	 &	 Gilberg,	 R.	 F.	 (2006).	 Computer	 science	 a
structured	 programming	 approach	 using	 C	 .	 Vancouver,	 B.C.:
Langara	College.

●					Stepanov,	A.	A.,	&	McJones,	P.	R.	(2010).	Elements	of	programming.
Upper	Saddle	River,	NJ:	Addison-Wesley.

●					Zheng,	L.,	Dong,	Y.,	Yang,	F.,	&	Press,	T.	(2019).	C	Programming.	De
Gruyter.

●	 	 	 	 	 	 drsh008@gmail.com,	 D.	 R.	 S.-.	 (n.d.).	 Retrieved	 from
http://www.cppforschool.com/project/banking-system-project.htmling

●	 	 	 	 	Stroustrup,	B.	 (2014).	The	C	programming	 language.	Upper	Saddle
River,	NJ:	Addison-Wesley..

●	 	 	 		KOENIG,	A.	N.	D.	R.	E.	W.	M.	O.	O.	B.	A.	R.	B.	A.	R.	A.	E.	(2019).
Accelerated	 C	 :	 practical	 programming	 by	 example.	 Place	 of
publication	not	identified:	ADDISON-WESLEY.

●	 	 	 	 	 Lotysz,	 S.,	 &	 Helerea,	 E.	 (2014).	 Programme	 and	 abstracts:
technology	in	times	of	transition:	the	41st	Icohtec	symposium,	Brasov,
2014.	Brasov	(Rumanía):	Transilvania	University	of	Brasov.

●					Stroustrup,	B.	(2015).	Programming:	principles	and	practice	using	C	.
Upper	Saddle	River	(New	Jersey):	Addison-Wesley.

●	 	 	 	 	 Williams,	 A.	 (2012).	 C	 concurrency	 in	 action:	 practical
multithreading.	Shelter	Island,	NY:	Manning.

	Introduction
	Chapter 1: Introduction to C++
	1.1 Background of C++
	1.2 C++ Programming
	●How to write a C++ program
	●Simple Program
	●Hello World

	1.3 Constants
	●Integer Constants
	●Character Constants
	●Float Constants
	●Boolean Constants
	●Programming Constants

	1.4 Data Type
	●void (Void)
	●int (Integer)
	●char (Character)
	●bool (Boolean - logical data in C++)
	●float (Floating Point)

	1.5 Variables
	●Variable Initialization
	●Variable Declaration

	1.6 Programming Examples
	Problem 1
	Problem 2

	1.7 Exercise Sets
	Chapter 2: How to write a C++ program
	2.1 Expressions
	●Primary Expressions in a C++ Program
	●Binary Expressions in C++
	●Assignment Expressions
	●Postfix Expressions

	2.2 Statements
	●Expression Statement
	●Compound Statement

	2.3 Programming Examples
	Problem - 1
	Problem-2

	2.4 Exercise Sets
	Chapter 3: Concept of “Functions” in C++
	3.1 Structured Programming and Designing
	3.2 Functions in C++
	●User Defined Functions
	●Function Definition
	●Prototype Declaration
	●Function Call
	●Void Functions with no Parameters
	●Void Functions with Parameters
	●Function Example

	3.3 Default Parameter Arguments
	3.4 Programming Examples
	Problem - 1
	Problem - 2

	3.5 Exercise Sets
	Chapter 4: Selection-Making
	4.1 Logical Data and Operators
	●Logical Data in C++
	●Logical Operators
	●Evaluating Logical Expressions
	●Relation Operators

	4.2 Two Way Selection
	●If, Else
	●Rules for If Else statements
	●Null Else Statement
	●Nested If Statements

	4.3 Multiway Selection
	●The Switch Statement
	●Else If Statement
	●Example Program

	4.4 Menu Program, C++
	Problem

	4.5 Programming Examples
	Problem

	4.6 Exercise Sets
	Chapter 5: Concept of “Arrays” in C++
	5.1 Using Arrays in C++
	●Declaration and Definition
	●Accessing Elements in Arrays
	●Storing Values in Arrays
	●Inputting Values
	●Assigning Values
	●Exchanging Values
	●Putting Value

	5.2 Arrays and Functions
	●Passing Individual Element
	●Passing the Whole Array

	5.3 Array Applications
	●Frequency Distribution Arrays
	●Histograms

	5.4 Sorting
	●Selection Sort
	●Insertion Sort
	●Bubble Sort

	5.5 Programming Examples
	Problem - 1
	Problem - 2

	5.6 Exercise Sets
	Chapter 6: Concept of “Pointers” in C++
	6.1 Pointers
	●Pointer Constants
	●Pointer Values
	●Pointer Variables

	6.2 Accessing Variables through pointers
	6.3 Pointer Declaration
	6.4 Initialization of a Pointer Variable
	Problem-1
	Problem-2

	6.5 Pointers and Functions
	●Pointers as Formal Parameters
	●Functions Return Pointers

	6.6 Arrays and Pointers
	6.7 Programming Examples
	Problem - 1
	Problem - 2

	6.8 Exercise Sets
	Chapter 7: Concept of “Classes” in C++
	7.1 Classes
	●Access Specifiers
	●Creating a Class
	●Declaring a Class
	●Class Definition

	7.2 Defining a Class Object
	●Instantiation
	●Accessing Class Members
	●Using Classes

	7.3 Constructors and Destructors
	●Constructors
	●Destructors

	7.4 Programming Examples
	Problem - 1
	Problem - 2

	7.5 Exercise Sets
	Chapter 8: Concept of “Strings” in C++
	8.1 Strings
	●Fixed Length String
	●Variable Length String

	8.2 C++ Strings
	●Storing Strings
	●String Literals

	8.3 String Input/Output
	●String Input “>>”
	●String Output “<<”

	8.4 Array and Strings
	8.5 Compare Packed Strings
	8.6 Morse Code Program Design
	8.7 The String Class
	8.8 Programming Examples
	Problem

	8.9 Exercise Sets
	Conclusion
	References

